Computations of the Cartan relations

Friedrich Wagemann

July 17, 2018

Let us compute the Cartan relations, i.e. for a Lie algebra \mathfrak{g} and a \mathfrak{g}-module V, the following relations between the Lie derivative L_{x} with respect to an element $x \in \mathfrak{g}$, the insertion operator i_{x} and the Chevalley-Eilenberg differential d :
(a) $L_{x}=i_{x} \circ d+d \circ i_{x}$,
(b) $L_{x} \circ L_{y}-L_{y} \circ L_{x}=L_{[x, y]}$,
(c) $L_{x} \circ i_{y}-i_{y} \circ L_{x}=i_{[x, y]}$, and
(d) $L_{x} \circ d=d \circ L_{x}$.

Relation (a): We have on the one hand

$$
\begin{aligned}
d\left(i_{x}(c)\right)\left(x_{1}, \ldots, x_{p}\right) & =\sum_{1 \leq i<j \leq p}(-1)^{i+j} c\left(x,\left[x_{i}, x_{j}\right], \ldots, \widehat{x}_{i}, \ldots, \widehat{x}_{j}, \ldots, x_{p}\right) \\
& -\sum_{i=1}^{p}(-1)^{i} x_{i} \cdot c\left(x, x_{1}, \ldots, \widehat{x}_{i}, \ldots, x_{p}\right)
\end{aligned}
$$

while on the other hand

$$
\begin{aligned}
i_{x}(d c)\left(x_{1}, \ldots, x_{p}\right) & =\sum_{1 \leq i<j \leq p}(-1)^{i+j} c\left(\left[x_{i}, x_{j}\right], x, \ldots, \widehat{x}_{i}, \ldots, \widehat{x}_{j}, \ldots, x_{p}\right) \\
& -\sum_{i=1}^{p}(-1)^{i+1} x_{i} \cdot c\left(x, x_{1}, \ldots, \widehat{x}_{i}, \ldots, x_{p}\right) \\
& +\sum_{j=1}^{p}(-1)^{j} c\left(\left[x, x_{j}\right], \ldots, \widehat{x}_{j}, \ldots, x_{p}\right)+x \cdot c\left(x_{1}, \ldots, x_{p}\right) .
\end{aligned}
$$

These last line gives $L_{x} c\left(x_{1}, \ldots, x_{p}\right)$, while the other terms cancel in the sum.

Relation (b): Computing $L_{x}\left(L_{y} c\right)\left(x_{1}, \ldots, x_{p}\right)$, we get terms with two brackets $\left[x, x_{i}\right]$ and $\left[y, x_{j}\right]$ as arguments of c, terms where x acts and $\left[y, x_{i}\right]$ is an argument, and terms where y acts and $\left[x, x_{i}\right]$ is an argument. These are symmetric in x and y with the same sign and cancel in the difference. The remaining
terms are those where $\left[x,\left[y, x_{i}\right]\right]$ is an argument, those where $\left[y,\left[x, x_{i}\right]\right]$ is an argument and those where first x and then y acts and the contrary. By the Jacobi identity, these give rise to $L_{[x, y]} c\left(x_{1}, \ldots, x_{p}\right)$.

Relation (c): In $\left(L_{x} \circ i_{y}\right)(c)\left(x_{1}, \ldots, x_{p-1}\right), L_{x}$ acts on the $(p-1)$-cochain $i_{y} c$. Thus there is no action of x on y. On the other hand, in $\left(i_{y} \circ L_{x}\right)(c)\left(x_{1}, \ldots, x_{p-1}\right)$, L_{x} acts on the degree p cochain c which is evaluated on the list of elements $\left(y, x_{1}, \ldots, x_{p-1}\right)$. We get exactly the same terms with the difference that there is a term with $[x, y]$ as the first argument. While all terms cancel, this last term gives $i_{[x, y]} c\left(x_{1}, \ldots, x_{p-1}\right)$.

Relation (d): This is shown by induction on the degree of the cochain. For a degree 0 cochain, i.e. an element $v \in V$, we have on the one hand

$$
L_{y}(d v)(x)=y \cdot d v(x)-d v([y, x])=y \cdot(x \cdot v)-[y, x] \cdot v,
$$

and on the other hand

$$
d\left(L_{y} v\right)(x)=d(y \cdot v)(x)=x \cdot(y \cdot v) .
$$

By the property that V is a \mathfrak{g}-module, the result of the first equation is equal to the result of the second.

For degree $p>0$, we can use insertion operators (which we cannot use in degree zero, because they diminish the degree !). We have

$$
\left(d\left(L_{x} c\right)-L_{x} d c\right)\left(x_{1}, \ldots, x_{p+1}\right)=i_{x_{1}}\left(d\left(L_{x} c\right)-L_{x} d c\right)\left(x_{2}, \ldots, x_{p+1}\right)
$$

thus it suffices to show $i_{x} \circ d \circ L_{y}-i_{x} \circ L_{y} \circ d=0$. This is computed using the previous identities:

$$
\begin{aligned}
i_{x} \circ d \circ L_{y}-i_{x} \circ L_{y} \circ d & =L_{x} \circ L_{y}-d \circ i_{x} \circ L_{y}+i_{[y, x]} \circ d-L_{y} \circ i_{x} \circ d \\
& =L_{x} \circ L_{y}-d \circ i_{x} \circ L_{y}+L_{[y, x]}-d \circ i_{[y, x]}-L_{y} \circ L_{x}+L_{y} \circ d \circ i_{x} \\
& =-d \circ i_{x} \circ L_{y}-d \circ i_{[y, x]}+L_{y} \circ d \circ i_{x} \\
& =-d \circ i_{x} \circ L_{y}-d \circ i_{[y, x]}+d \circ L_{y} \circ i_{x} \\
& =d \circ\left(i_{x} \circ L_{y}-i_{[y, x]}+L_{y} \circ i_{x}\right)=0 .
\end{aligned}
$$

Observe that we used the induction hypothesis from the third to the fourth line, using that the degree of the cochain we are operating on is one less, because i_{x} acts on it.

