Exercice sheet 2: Cohomology of Lie algebras

Friedrich Wagemann

Exercice 1: Show the Cartan relations in on the Chevalley-Eilenberg complex:

- (a) $L_x = d \circ i_x + i_x \circ d$,
- (b) $L_x \circ L_y L_y \circ L_x = L_{[x,y]},$
- (c) $L_x \circ i_y i_y \circ L_x = i_{[x,y]},$
- (d) $L_x \circ d = d \circ L_x$.

Deduce that a Lie algebra acts trivially on its cohomology.

Exercice 2: Show that the derivations of a Lie algebra \mathfrak{g} fit into an exact sequence:

$$0 \to Z(\mathfrak{g}) \to \mathfrak{g} \stackrel{\mathrm{ad}}{\to} \mathfrak{der}\,(\mathfrak{g}) \to \mathfrak{out}\,(\mathfrak{g}) \to 0.$$

Exercice 3:

(a) Show that a homomorphism of \mathfrak{g} -modules $f: V \to W$ induces a k-linear map

$$f_*: H^*(\mathfrak{g}, V) \to H^*(\mathfrak{g}, W), \ [c] \mapsto [f \circ c],$$

(b) Show that a short exact sequence of \mathfrak{g} -modules

$$0 \to V' \xrightarrow{f} V \xrightarrow{g} V'' \to 0$$

induces a long exact sequence in cohomology.

Exercice 4: Compute the cohomology of the Lie algebra $\mathfrak{sl}_2(\mathbb{C})$. Compute the cohomology of the abelian Lie algebra k^n . Compute the cohomology of the Heisenberg Lie algebra.