Exercice sheet 3: More cohomology

Friedrich Wagemann

Exercice 1: Let $L\mathfrak{g} = \operatorname{Map}(S^1, \mathfrak{g})$ be the loop algebra over the simple complex Lie algebra \mathfrak{g} . Such a Lie algebra admits an invariant scalar product \langle, \rangle . The bracket in $L\mathfrak{g}$ is given by the bracket in \mathfrak{g} . It possesses a central extension $\widehat{L\mathfrak{g}}$ given by the cocycle

$$\alpha(f,g) = \int_0^1 \langle f,dg\rangle.$$

Examine the crossed module

$$0 \to \mathbb{C} \to \widehat{L\mathfrak{g}} \to \mathfrak{der}\,(\widehat{L\mathfrak{g}}) \to \operatorname{Vect}(S^1) \to 0.$$

Is it non-trivial?

Exercice 2: W_1 is the Lie algebra generated by elements e_n with the bracket $[e_n, e_m] = (m-n)e_{n+m}$ for all $n, m \in \mathbb{Z}, n, m \geq -1$. Take as cochain spaces for W_1 the polynomial cochains

$$C^{p}(W_{1},k) = \bigoplus_{l \in \mathbb{Z}} \bigoplus_{\substack{i_{1} + \ldots + i_{p} = l \\ i_{j} \geq -1}} k \epsilon_{i_{1}} \wedge \ldots \wedge \epsilon_{i_{p}},$$

where ϵ_i is the element dual to e_i , i.e. $\epsilon_i(e_j) = \delta_{i,j}$.

- (a) Compute the Lie derivative L_{e_0} on a cochain $\epsilon_{i_1} \wedge \ldots \wedge \epsilon_{i_p}$. Show that the subcomplex of all cochains $\epsilon_{i_1} \wedge \ldots \wedge \epsilon_{i_p}$ with non-zero eigenvalue under the action of L_{e_0} admits a contracting homotopy.
- (b) Compute the subcomplex of cochains whose eigenvalue under L_{e_0} is zero. Use it to compute the cohomology of W_1 .
- (c) $k = \mathbb{C}$: Compare to the cohomology of $\mathfrak{sl}_2(\mathbb{C})$: Show that $\mathfrak{sl}_2(\mathbb{C})$ is isomorphic to the subalgebra of W_1 generated by e_{-1}, e_0 and e_1 .