# Exercice sheet 3: More cohomology 

Friedrich Wagemann

Exercice 1: Let $L \mathfrak{g}=\operatorname{Map}\left(S^{1}, \mathfrak{g}\right)$ be the loop algebra over the simple complex Lie algebra $\mathfrak{g}$. Such a Lie algebra admits an invariant scalar product $\langle$,$\rangle . The$ bracket in $L \mathfrak{g}$ is given by the bracket in $\mathfrak{g}$. It possesses a central extension $\widehat{L \mathfrak{g}}$ given by the cocycle

$$
\alpha(f, g)=\int_{0}^{1}\langle f, d g\rangle
$$

Examine the crossed module

$$
0 \rightarrow \mathbb{C} \rightarrow \widehat{L \mathfrak{g}} \rightarrow \mathfrak{d e r}(\widehat{L \mathfrak{g}}) \rightarrow \operatorname{Vect}\left(S^{1}\right) \rightarrow 0
$$

Is it non-trivial ?

Exercice 2: $W_{1}$ is the Lie algebra generated by elements $e_{n}$ with the bracket $\left[e_{n}, e_{m}\right]=(m-n) e_{n+m}$ for all $n, m \in \mathbb{Z}, n, m \geq-1$. Take as cochain spaces for $W_{1}$ the polynomial cochains

$$
C^{p}\left(W_{1}, k\right)=\bigoplus_{l \in \mathbb{Z}} \bigoplus_{\substack{i_{1}+\ldots+i_{p}=l \\ i_{j} \geq-1}} k \epsilon_{i_{1}} \wedge \ldots \wedge \epsilon_{i_{p}}
$$

where $\epsilon_{i}$ is the element dual to $e_{i}$, i.e. $\epsilon_{i}\left(e_{j}\right)=\delta_{i, j}$.
(a) Compute the Lie derivative $L_{e_{0}}$ on a cochain $\epsilon_{i_{1}} \wedge \ldots \wedge \epsilon_{i_{p}}$. Show that the subcomplex of all cochains $\epsilon_{i_{1}} \wedge \ldots \wedge \epsilon_{i_{p}}$ with non-zero eigenvalue under the action of $L_{e_{0}}$ admits a contracting homotopy.
(b) Compute the subcomplex of cochains whose eigenvalue under $L_{e_{0}}$ is zero. Use it to compute the cohomology of $W_{1}$.
(c) $k=\mathbb{C}$ : Compare to the cohomology of $\mathfrak{s l}_{2}(\mathbb{C})$ : Show that $\mathfrak{s l}_{2}(\mathbb{C})$ is isomorphic to the subalgebra of $W_{1}$ generated by $e_{-1}, e_{0}$ and $e_{1}$.

