Exercise I

- 1. Determine whether the following sets are affine algebraic sets
 - (a) $\mathbf{Sl}(n,\mathbb{C}) := \{A \in \operatorname{Mat}(n \times n,\mathbb{C}) \mid \det A = 1\},\$
 - (b) $\{(\cos t, \sin t) \mid t \in [0, 2\pi]\} \subseteq \mathbb{R}^2$,
 - (c) $\{(t, \sin t) \mid t \in \mathbb{R}\} \subseteq \mathbb{R}^2$.
- 2. Show that
 - (a) an arbitrary intersection of affine algebraic sets is an affine algebraic set, i.e.,

$$\bigcap_{i\in I} V(S_i) = V(\bigcup_{i\in I} S_i);$$

- (b) a finite union of affine algebraic sets is an affine algebraic set,
- (c) any finite set is an affine algebraic set.