Exercise I

1. Determine whether the following sets are affine algebraic sets
(a) $\mathbf{S l}(n, \mathbb{C}):=\{A \in \operatorname{Mat}(n \times n, \mathbb{C}) \mid \operatorname{det} A=1\}$,
(b) $\{(\cos t, \sin t) \mid t \in[0,2 \pi]\} \subseteq \mathbb{R}^{2}$,
(c) $\{(t, \sin t) \mid t \in \mathbb{R}\} \subseteq \mathbb{R}^{2}$.
2. Show that
(a) an arbitrary intersection of affine algebraic sets is an affine algebraic set, i.e.,

$$
\cap_{i \in I} V\left(S_{i}\right)=V\left(\cup_{i \in I} S_{i}\right) ;
$$

(b) a finite union of affine algebraic sets is an affine algebraic set,
(c) any finite set is an affine algebraic set.

