Exercise II

- 1. Let R be a commutative unital ring. Prove that
 - (a) every maximal ideal of R is prime,
 - (b) the radical \sqrt{I} of an ideal I of R is an ideal,
 - (c) every prime ideal of R is radical,
 - (d) an ideal \mathfrak{m} of a ring R is maximal if and only if the ring R/\mathfrak{m} is a field,
 - (e) an ideal \mathfrak{p} of a ring R is prime if and only if the ring R/\mathfrak{p} is a domain,
 - (f) an ideal \mathfrak{I} of a ring R is radical if and only if the ring R/\mathfrak{I} is reduced.
- 2. Let $F: V \longrightarrow W$ be a morphism of affine algebraic varieties. Prove that F is continuous in the Zariski topology.
- 3. Identify the prime ideals and reduced ideals in the rings:
 - (a) \mathbb{Z} ,
 - (b) $\mathbb{Z}/(8\mathbb{Z}),$
 - (c) $\mathbb{Z}/(4\mathbb{Z})$.
- 4. Which ideals in 3(a), 3(b) and 3(c) above are reduced but not prime?

1