1) For each of the following groups, write down all its subgroups: $\mathbb{Z} / 4, \mathbb{Z} / 2 \times \mathbb{Z} / 2, \mathbb{Z} / 6, S_{3}, S_{4}$. If you finished these, try the dihedral groups of order 8 and 10 and also S_{5}. Also, explicitly give all the elements of a Sylow 2-subgroup of A_{4} as cycles. For instance one Sylow 3 -subgroup is $\{e,(123),(132)\}$ and another is $\{e,(234),(243)\}$. Describe a Sylow 3 -subgroup of S_{6} explicitly.
2) Let $f(x) \in \mathbb{Z}[x]$ have degree d and roots $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{d}$. The discriminant of $f(x)$ is $D:=$ $\left(\prod_{1 \leq i<j \leq d}\left(\alpha_{i}-\alpha_{j}\right)\right)^{2}$. So for $d=3, D=\left(\left(\alpha_{1}-\alpha_{2}\right)\left(\alpha_{1}-\alpha_{3}\right)\left(\alpha_{2}-\alpha_{3}\right)\right)^{2}$. What is the discriminant of $x^{2}+b x+c$ in terms of b and c ? What is the discriminant of $x^{3}+b x+c$? (Recall that $b=\alpha_{1} \alpha_{2}+\alpha_{1} \alpha_{3}+\alpha_{2} \alpha_{3}$ and $c=-\alpha_{1} \alpha_{2} \alpha_{3}$ where the α_{i} are the roots of $f(x)$. Note that the discriminant is invariant under the action of S_{d}, but that $\prod_{1 \leq i<j \leq d}\left(\alpha_{i}-\alpha_{j}\right)$ is not invariant under the action of S_{d}. Show it is invariant under the action of the alternating group $A_{d} \subset S_{d}$. Can you prove the fact below?

Fact Let $f(x) \in \mathbb{Z}[x]$ be irreducible of degree d. Let K be a splitting field of $f(x)$, let $G=G a l(K / \mathbb{Q})$ and let D be the discriminant of $f(x)$. Then $G \subseteq S_{d}$ and $G \subset A_{d} \Longleftrightarrow D$ is a perfect square in \mathbb{Z}.

Show that $f(x)=x^{3}+x^{2}-2 x-1$ is irreducible and has discriminant 7^{2}. Thus the splitting field K of $f(x)$ satisfies $G l a(K / \mathbb{Q}) \simeq \mathbb{Z} / 3$. Can you find a quartic polynomial whose discriminant is a square?

