1) Let $K=\mathbb{Q}(\sqrt{-1})$. Write down all field automorphisms of K that fix \mathbb{Q} pointwise, that is all bijective $\sigma: K \rightarrow K$ that satisfy:

- $\sigma(x+y)=\sigma(x)+\sigma(y)$,
- $\sigma(x \cdot y)=\sigma(x) \cdot \sigma(y)$,
- $x \in \mathbb{Q} \Longrightarrow \sigma(x)=x$.

Do the same for $K=\mathbb{Q}\left(7^{1 / 4}\right)$ and $K=\mathbb{Q}(\sqrt{2}, \sqrt{3})$. One case is different from the other two. Why?
2) How many fields K are there satisfying $\mathbb{Q} \subset K \subset \mathbb{Q}\left(\zeta_{p}\right)$ when $p=13$? How about when $p=17$? For which type of primes p will there be few intermediate fields? For which will there be many?
3) In class I gave an example of an irreducible 5th degree polynomial that had three real roots and two complex roots. The Galois group of the splitting field over \mathbb{Q} was then S_{5} by a group theoretic lemma. Can you give an example of an irreducible 7 th degree polynomial with exactly 5 real roots and two complex roots? If you can, then the Galois group of the splitting field over \mathbb{Q} will be full group S_{7}.

