ICTP 2018 Summer School: Galois Theory Homework \#4

1) Let ζ_{11} be a primitive 11th root of unity. The minimal polynomial of ζ_{11} is $h(x)=x^{10}+x^{9}+$ $x^{8}+x^{7}+x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1$. Let K be the splitting field of $h(x)$. Then K / \mathbb{Q} is Galois with Galois group $(\mathbb{Z} / 11)^{*} \simeq \mathbb{Z} / 10$. Let $H \subset \mathbb{Z} / 10$ be the unique subgroup of order 2 . Then K^{H} / \mathbb{Q} is a $\mathbb{Z} / 5$-extension. Find it's minimal polynomial.
2) The extension \mathbb{C} / \mathbb{R} is a $\mathbb{Z} / 2$ Galois extension of fields. Complex conjugation generates the Galois group. Note that $N_{\mathbb{R}}^{\mathbb{C}}(i)=i \cdot-i=-i^{2}=1$ so Hilbert's Theorem 90 implies there exists a $z \in \mathbb{C}$ such that $i=z / \bar{z}$. Find such a z. Can you find them all?
3) In class we proved the fundamental theorem of algebra, that any $h(x) \in \mathbb{C}[x]$ factors to linear terms. This of course implies there are no finite extensions of \mathbb{C}. Alternatively, one can use Kummer theory to prove, for $n \geq 2$, there are no \mathbb{Z} / n-extensions of \mathbb{C}. Do this. Which result is stronger? (Remember, each nontrivial \mathbb{Z} / n-extension of \mathbb{C} corresponds to a nontrivial element of $\mathbb{C}^{*} /\left(\mathbb{C}^{*}\right)^{n}$.
