1) Consider irreducible $f(x) \in \mathbb{Z}[x]$ and see what Galois groups you get for these polynomials. This is a computational project that will require coding (Sage, the MAGMA calculator?) and experimenting. Consider $f(x)$ by degree d. Why is there nothing to do for $d=2$? For $d=3$ how will you order your irreducible polynomials? You could look at $f(x)=x^{3}+a x^{2}+b x+c$ where $a, b, c \in \mathbb{Z}$ or maybe $f(x)=x^{3}+b x+c$ where $b, c \in \mathbb{Z}$. Two natural ways to do this are:

- You look in a box with $0 \leq|a|,|b|,|c| \leq X$ and gather data for various large X.
- Order the polynomials by discriminant up to some large X. How do you know you have checked all irreducible $f(x)$ with discriminant less than X ?
Are there other ways to organize the polynomials? There are only two subgroups of S_{3} with order a multiple of 3 , so your answer will be either $\mathbb{Z} / 3$ or S_{3}. How often does each occur?

After this try higher degrees. You will need to determine the transitive subgroups of S_{d} for small d. What does your data suggest happens for $d=4$, e.g., how often is the Galois group A_{4} ?

This is a project where you will not prove anything. Rather you'll simply trust that whatever software you use is accurately computing Galois groups and gather data and make a conjecture.
2) This is a more theoretical project. The goal is for small d to list the transitive subgroups of S_{d} and exhibit with proof a polynomial $f(x) \in \mathbb{Z}[x]$ with Galois group each of these transitive subgroups. For $d=4$ think about the polynomials $f(x)=x^{4}+a x^{2}+b$. Which Galois groups can you get with these?

A more general question is the Inverse Galois Problem. Which finite groups G can you exhibit, with proof, as a Galois Group over \mathbb{Q} ? Start with the cyclic groups. This problem is one of the outstanding unsolved problems in the field.

Here is a fact that might be helpful:
Fact Let $f(x) \in \mathbb{Z}[x]$ be irreducible of degree d with discriminant D. Let p be a prime and suppose $p \nmid D$. Suppose that $\bmod p$ we have that $f(x)$ factors to $\prod_{i=1}^{k} f_{i}(x)^{e_{i}}$ where $f_{i}(x)$ has degree d_{i}. Then all $e_{i}=1$. If $G \subseteq S_{d}$ is the Galois group of $f(x)$, then G contains an element of S_{d} that is a product of k disjoint cycles, the i th one having length d_{i}.

This Fact helps show that certain structures are in G. For instance $f(x)=x^{3}+x-1$ is irreducible (why?) and has discriminant $D=-31$. Mod 2 it is irreducible and mod 3 it factors as $(x-2)\left(x^{2}+2 x+2\right)$. In this case G contains a 3 -cycle and a transposition. Since G has elements of order 2 and 3 its order must be a multiple of 6 so $G=S_{3}$. Using this Fact, and some understanding of types of elements that generate S_{d}, you can show S_{d} is a Galois group over \mathbb{Q}.

