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Introduction

These are the lecture notes for my lectures from the 16th of July to the 20th of
july 2018 for the EAUMP-ICTP School and Workshop on Homological Methods
in Algebra and Geometry II.

The goal of this series of lectures is an introduction to the cohomology of Lie
algebras with an emphasis on crossed modules of Lie algebras. Every algebraic
structure comes with a cohomology theory. The cohomology spaces are certain
invariants which may serve to reflect the structure of the Lie algebra in ques-
tion or to distinguish Lie algebras, but which may also enable to construct new
Lie algebras as central or abelian extensions by the help of 2-cocycles. Central
extensions play an important role in physics, because they correspond to pro-
jective representations of the non-extended Lie algebra which are important in
quantum theory.

Crossed modules are an algebraic structure which exists not only for Lie
algebras and groups, but in many more algebraic contexts. Their first goal
is to represent 3-cohomology classes. Next, they are related to the question of
existence of an extension for a given outer action (we will not dwell on this aspect
of the theory). Another important feature is that crossed modules of Lie algebras
are the strict Lie 2-algebras and thus give a hint towards the categorification
of the notion of a Lie algebra. The study of the categorification of algebraic
notions is rather new and currently of increasing interest, also in connection
with physics (higher gauge theory) and representation theory.

Concerning references, a standard reference on homological algebra and the
cohomology of Lie algebras is [5]. References on crossed modules of Lie algebras
include [2], [3] and [4]. Crossed modules of Lie algebras seen as strict Lie 2-
algebras appeared in [1].

1 Homological algebra

Here we present some preliminaries on homological algebra over a field k. Ho-
mological algebra is much simpler over a field k than over a general commutative
ring. Indeed, over k, all exact sequences split as sequences of k-vector spaces,
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while there are non-splitting exact sequences over Z like for example

0 → Z/2Z → Z/4Z → Z/2Z → 0.

Definition 1.1. A complex (of k-vector spaces) (C∗, d∗) is a sequence of k-
linear maps

C0
d0→ C1

d1→ . . . Cr−1 dr−1

→ Cr
dr→ Cr+1 → . . .

for 0 ≤ r such that dr ◦ dr−1 = 0 for all r ≥ 1.

Remark 1.2. The fact that dr−1 : Cr−1 → Cr is expressed as saying that
dr−1 increases degree or that (C∗, d∗) is a cohomological complex or a cochain
complex. There is a variant where dr−1 diminishes degree and this variant is
then called a homological complex or chain complex.

Definition 1.3. The cohomology of a complex (C∗, d∗) is by definition the
sequence of vector spaces H∗(C∗, d∗) where

Hp(C∗, d∗) =
ker (dp : C

p → Cp+1)

im (dp−1 : Cp−1 → Cp)
.

Elements of ker (dp : Cp → Cp+1) are called p-cocycles of C∗, elements of
im (dp−1 : Cp−1 → Cp) are called p-coboundaries of C∗. The subspace of p-
cocycles is denoted Zp(C∗, d∗), and the subspace of p-coboundaries is denoted
Bp(C∗, d∗).

Remark 1.4. Observe that Hp(C∗, d∗) is well-defined, because im (dp−1 :
Cp−1 → Cp) ⊂ ker (dp : Cp → Cp+1) by the requirement dp ◦ dp−1 = 0.
Observe that if the sequence

C0
d0→ C1

d1→ . . . Cr−1 dr−1

→ Cr
dr→ Cr+1 → . . .

is exact (i.e. im (dp−1 : Cp−1 → Cp) = ker (dp : C
p → Cp+1) for all p ≥ 1), then

Hp(C∗, d∗) = 0 for all p ≥ 0. Therefore the cohomology measures the deviation
from exactness of a complex.

Definition 1.5. A morphism of complexes ϕ∗ : (C∗, dC∗ ) → (D∗, dD∗ ) is a
sequence of k-linear maps ϕp : Cp → Dp such that for all p ≥ 0, the diagrams

Cp
ϕp

//

dCp
��

Dp

dDp
��

Cp+1 ϕp+1

// Dp+1

are commutative. Here we have written dCp for the differential belonging to

the complex (C∗, dC∗ ) and dDp for the one belonging to (D∗, dD∗ ), but we will
denote generically all differentials by dp or even d in the following in order to
lighten the notation.
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Lemma 1.6. A morphism of complexes ϕ∗ : (C∗, d∗) → (D∗, d∗) induces a
well-defined k-linear map Hp(ϕ) : Hp(C∗, d∗) → Hp(D∗, d∗) in cohomology for
all p ≥ 0.

Proof. We have a commutative diagram

Cp−1

ϕp−1

��

d // Cp

ϕp

��

d // Cp+1

ϕp+1

��
Dp−1 d // Dp d // Dp+1

Therefore, ϕp sends cocycles to cocycles and coboundaries to coboundaries.
The map Hp(ϕ) : Hp(C∗, d∗) → Hp(D∗, d∗) is defined by Hp(ϕ)[c] := [ϕ(c)],
where c is a p-cocycle and [c] denotes its class in Hp(C∗, d∗), while [ϕ(c)] denotes
the class of the p-cocycle ϕ(c) in Hp(D∗, d∗).

Definition 1.7. A homotopy between morphisms of complexes ψ∗, ϕ∗ : (C∗, d∗) →
(D∗, d∗) is a sequence of k-linear maps hp : C

p → Dp−1 for all p ≥ 1 such that

φp − ϕp = hp+1 ◦ d
C
p + dDp−1 ◦ hp

for all p ≥ 1.

Lemma 1.8. If there exists a homotopy h∗ between two morphisms of complexes
ψ∗, ϕ∗ : (C∗, d∗) → (D∗, d∗), then the induced k-linear maps Hp(ϕ) and Hp(ψ)
coincide for all p ≥ 0.

Proof. For all c ∈ Cp, we have

φp(c)− ϕp(c) = hp+1 ◦ d
C
p (c) + dDp−1 ◦ hp(c).

Therefore we obtain for a p-cocycle c ∈ Zp(C∗, d∗)

φp(c)− ϕp(c) = dDp−1 ◦ hp(c).

This implies that Hp(ϕ)[c] = Hp(ψ)[c].

Definition 1.9. A contracting homotopy is a homotopy between the morphisms
of complexes idC : (C∗, d∗) → (C∗, d∗) and the zero map 0 : (C∗, d∗) → (C∗, d∗).

Lemma 1.10. If there exists a contracting homotopy of the complex (C∗, d∗),
then its cohomology vanishes, i.e. Hp(C∗, d∗) = 0 for all p ≥ 0.

Proof. Exercise.

Definition 1.11. A short exact sequence of complexes is a sequence of mor-
phisms of complexes

0 → C∗
1

ϕ∗

−→ C∗
2

ψ∗

−→ C∗
3 → 0
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such that for all p ≥ 0, the sequence of k-vector spaces

0 → Cp1
ϕp

−→ Cp2
ψp

−→ Cp3 → 0

is exact.

Theorem 1.12. A short exact sequence of complexes

0 → C∗
1

ϕ∗

−→ C∗
2

ψ∗

−→ C∗
3 → 0

induces a long exact sequence in cohomology, i.e. there exists a k-linear map
∂p : Hp(C∗

3 ) → Hp+1(C∗
1 ), called the connecting homomorphism, such that the

sequence of k-vector spaces

. . .
∂p−1

−→ Hp(C∗
1 )

Hp(ϕ)
−→ Hp(C∗

2 )
Hp(ψ)
−→ Hp(C∗

3 )
∂p

−→ Hp+1(C∗
1 ) → . . .

is exact.

Proof. Exercise.

Lemma 1.13 (Five Lemma). Suppose there is a commutative diagram of k-
vector spaces

0 // V ′

ϕ′

��

i // V
π //

ϕ

��

V ′′ //

ϕ′′

��

0

0 // W ′ i′ // W
π′

// W ′′ // 0

with exact rows and such that ϕ′ and ϕ′′ are isomorphisms. Then ϕ is an
isomorphism.

Proof. Exercise.

2 Lie algebras

Starting from here, we suppose that the characteristic of the field k is different
from 2.

Definition 2.1. A Lie algebra is a k-vector space g with a k-bilinear map
[, ] : g× g → g, called the bracket, such that

(a) [, ] is antisymmetric, i.e. for all x, y ∈ g: [x, y] = −[y, x].

(b) [, ] satisfies the Jacobi identity, i.e. for all x, y, z ∈ g:

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.
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Example 2.2. (a) The most basic example of a Lie algebra is the Lie algebra
ALie underlying an associative algebra A. By definition, ALie is the k-
vector space A with the bracket [a, b] := ab − ba for all a, b ∈ A. This
applies for example to the associative algebra of n × n-matrices Mn(k)
over the field k, or to the associative algebra of endomorphisms End(V )
of a k-vector space V . In the first case, the corresponding Lie algebra is
denoted gln(k), in the second case, it is denoted gl(V ).

(b) Another different way of associating to an associative algebra A a Lie
algebra is to consider its Lie algebra of derivations Der(A). A derivation
of A is a linear map f : A → A such that f(ab) = af(b) + f(a)b for
all a, b ∈ A. The composition of two derivations f1, f2 is in general not a
derivation, but [f1, f2] := f1◦f2−f2◦f1 is easily verified to be a derivation.
This bracket renders Der(A) a k-Lie algebra.

(c) This last example has a geometric analogue: The vector fields on a smooth
manifold (or on a smooth algebraic variety) form a k-Lie algebra, where
we suppose k = R or C for smooth manifolds. In case M = G a Lie group
(like the Lie group Gln(k), Sln(k), SOn(R), or Spn(R)), the left-invariant
vector fields form a Lie subalgebra which leads to the Lie algebra of a
Lie group (in the examples, this gives gln(k), sln(k), son(R) or spn(R)).
The difference is that while the Lie algebra of left-invariant vector fields
on a Lie group is a finite-dimensional Lie algebra, the Lie algebra of all
smooth vector fields on any smooth manifold is an infinite-dimensional Lie
algebra.

Definition 2.3. A k-linear map f : g → h between k-Lie algebras g and h is
called a Lie algebra morphism in case for all x, y ∈ g, we have

f([x, y]) = [f(x), f(y)].

Example 2.4. Beyond the zero map and the identity id : g → g, a more
interesting example is the trace

tr : gln(k) → k.

The 1-dimensional k-vector space k carries here the abelian or trivial Lie algebra
structure, i.e. the bracket map is the zero map. The trace is a Lie algebra
homomorphism, because the trace of a commutator is zero. This identifies
sln(k) as the kernel of the trace map.

Definition 2.5. A sub vector space h ⊂ g is a Lie subalgebra in case the bracket
in g of two elements in h lies still in h: For all x, y ∈ h, [x, y] ∈ h. It is called an
ideal, in case for all x ∈ g and all y ∈ h, [x, y] ∈ h.

Lemma 2.6. The kernel of a morphism of Lie algebras is an ideal.

In case h ⊂ g is an ideal, the quotient vector space g/h carries an induced
bracket and becomes a Lie algebra. In the above example, sln(k) is an ideal and
the quotient vector space becomes the trivial Lie algebra k.
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Definition 2.7. Let V be a k-vector space and g a k-Lie algebra. V is called
a g-module in case there exists a morphism of Lie algebras φ : g → gl(V ).
Denoting the action more simply by φ(x)(v) =: x · v, the property to be a
morphism of Lie algebras reads for all x, y ∈ g and all v ∈ V

x · (y · v))− y · (x · v)) = [x, y] · v.

Example 2.8. It is easy to verify that A-modules for an associative algebra A
become ALie-modules. For example, the Mn(k)-module kn becomes a gln(k)-
module (where the action is given by the action of a matrix on a vector).

3 Cohomology of Lie algebras

Let g be a k-Lie algebra and V be a g-module. We associate to this data a
complex of k-vector spaces (C∗(g, V ), d∗). Namely, we set

Cp(g, V ) = Alt(gp, V )

for p ≥ 1 and C0(g, V ) = V . Here Alt(Wn, V ) for two vector spaces V,W
denotes the space of k-multilinear, alternating maps from Wn to V . These
multilinear maps c ∈ Alt(gp, V are antisymmetric in adjacent entries, i.e. for all
w1, . . . , wn ∈W , we have

c(w1, . . . , wi, wi+1, . . . , wn) = −c(w1, . . . , wi+1, wi, . . . , wn).

General elements wi and wj can change places in the entries of c by encountering
the sign of the permutation exchanging the two entries. Observe that in case g is
of dimension n, Alt(gn, V ) has the same dimension as V and Alt(gn+1, V ) = 0.
This follows from the fact that there is a unique k-multilinear, alternating map
Alt(gn, k) up to scalar multiple in this case.

The Chevalley-Eilenberg complex is given by the following differential dp :
Cp(g, V ) → Cp+1(g, V ). For c ∈ Cp(g, V ), we set

dpc(x1, . . . , xp+1) =
∑

1≤i<j≤p+1

(−1)i+jc([xi, xj ], x1, . . . , x̂i, . . . , x̂j , . . . , xp+1)+

−

p+1∑

i=1

(−1)ixi · c(x1, . . . , x̂i, . . . , xp+1).

Lemma 3.1. dp+1 ◦ dp = 0 for all p ≥ 0.

Proof. One possible proof is by brute force computation. Another possible
proof uses the simplicial structure of the map dp. Here we present a proof
relying on the Cartan calculus on the Chevalley-Eilenberg complex. Introduce
the following operations for x ∈ g.

Lx : Cp(g, V ) → Cp(g, V ),

c 7→ ((x1, . . . , xp) 7→ x · c(x1, . . . , xp)−
∑

c(x1, . . . , [x, xi], . . . , xp).
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and

ix : Cp(g, V ) → Cp−1(g, V ), c 7→ ((x1, . . . , xp−1) 7→ c(x, x1, . . . , xp−1).

We have the following relations between these operators and the Chevalley-
Eilenberg differential d (where we now omit the dimensional index for better
readability).

(a) Lx = d ◦ ix + ix ◦ d,

(b) Lx ◦ Ly − Ly ◦ Lx = L[x,y],

(c) Lx ◦ iy − iy ◦ Lx = i[x,y],

(d) Lx ◦ d = d ◦ Lx.

These are Cartan’s formulas. They also hold on the de Rham complex of
differential forms. Formulas (b) and (c) only hold for strictly positive p. We
leave the proof of these formulas as Exercises.

Let us conclude the proof of the lemma by induction using (a)-(d). For
p = 0, x1, x2 ∈ g and v ∈ V , we have

d2v(x1, x2) = −dv([x1, x2]) + x1 · dv(x2)− x2 · dv(x1)

= −[x1, x2] · v + x1 · (x2 · v)− x2 · (x1 · v) = 0.

For p > 0, c ∈ Cp(g, V ) and x1, . . . , xp+2 ∈ g, we have

(d2c)(x1, . . . , xp+2) = (ix1
◦ d ◦ d)(c)(x2, . . . , xp+2)

= (Lx1
◦ d− d ◦ ix1

◦ d)(c)(x2, . . . , xp+2)

= (Lx1
◦ d− d ◦ Lx1

+ d ◦ d ◦ ix1
)(c)(x2, . . . , xp+2)

= 0.

Here we have used (a) in the second and third line, and finally formula (d) and
the induction hypothesis d ◦ d = 0 on Cp−1(g, V ).

Definition 3.2. The p-th comology space of the Lie algebra g with values in
the g-module V is by definition Hp(C∗(g, V ), d∗).

4 Interpretations of low degree cohomology spaces

In degree p = 0, the cohomology space H0(g, V ) is simply the space of g-
invariants V g in V :

V g := {v ∈ V | ∀x ∈ g : x · v = 0}.

This follows immediately from the facts that H0(g, V ) = Z0(g, V ) and that the
coboundary operator d0 : V → C1(g, V ) is given by v 7→ (x 7→ x · v).
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Example 4.1. (a) For the action of gln(k) on kn, the invariants are zero.
Indeed, the zero vector v = 0 ∈ kn is the only vector which satisfies
x · v = 0 for all matrices x ∈ gln(k).

(b) For the action of the Lie algebra so3(R) of traceless antisymmetric matrices
on R3, we have as invariants still only the zero vector.

In degree p = 1, we obtain

Z1(g, V ) = {c : g → V | ∀x, y ∈ g : c[x, y]− x · c(y) + y · c(x) = 0}.

Observe that this is a derivation property for the linear map c : g → V : c is
called a derivation in case for all x, y ∈ g: c[x, y] = x · c(y)− y · c(x). The space
of derivations is denoted by der (g, V ). One calls inner derivation a derivation
c : g → V which is obtained as cv(x) := x ·v for some v ∈ V . The space of inner
derivations is denoted inder (g, V ). Thus trivially

H1(g, V ) = der (g, V ) / inder (g, V ).

For example, in the special case where V = k is the trivial 1-dimensional g-
module (i.e. all operations x · v = 0), this gives

H1(g, k) =
(
g / [g, g]

)∗

,

the k-linear dual of the quotient of g with respect to the commutator ideal [g, g],
i.e. the subspace generated by all commutators [x, y] for x, y ∈ g. For the Lie
algebra gln(k), we obtain here

H1(gln(k), k) =
(
gln(k) / [gln(k), gln(k)]

)∗

= k∗,

because [gln(k), gln(k)] = sln(k).

Proposition 4.2. (a) A homomorphism of g-modules f : V → W induces a
k-linear map

f∗ : H∗(g, V ) → H∗(g,W ), [c] 7→ [f ◦ c].

(b) A short exact sequence of g-modules

0 → V ′ f
→ V

g
→ V ′′ → 0

induces a long exact sequence in cohomology.

Proof. Both statements are exercises. Use Theorem 1.12 for the second asser-
tion.
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5 Extensions and the second cohomology space

Definition 5.1. An abelian extension of Lie algebras is a short exact sequence
of Lie algebras

0 → a
i
→ g

π
→ h → 0,

where the Lie algebra a is abelian.

Given an abelian extension, the Lie algebra h acts on a in the following way.
For x ∈ h, there exists x̂ ∈ g such that π(x̂) = x. Let x act on a ∈ a by
x ·a := [x̂, i(a)]. This is well-defined, as another lift x̂′ of x is written x̂′ = x̂+a′

for some a′ ∈ a and thus x · a = [x̂, a] = [x̂′, a] because a is abelian. The
action property follows from the Jacobi identity. In the following, we will often
suppress the map i on elements and consider elements of a directly as elements
of the extension.

In case this action of h on a defined in this way is trivial, one speaks of a
central extension.

Definition 5.2. Two abelian extensions

0 → a
i
→ g

π
→ h → 0

and

0 → a
i′

→ g′
π′

→ h → 0,

with the same kernel a and the same cokernel h are called equivalent if there
exists a morphism of Lie algebras ϕ : g → g′ such that the diagram

0 // a

ida

��

i // g
π //

ϕ

��

h //

idh

��

0

0 // a
i′ // g′

π′

// h // 0

is commutative. Observe that in this case, the map ϕ is an isomorphism by
the Five Lemma.

The upshot of this section is to show the following theorem:

Theorem 5.3. The set of equivalence classes of abelian extensions with fixed
cokernel h and fixed kernel a is in bijection with H2(h, a).

For this, we will first of all associate a 2-cocycle to an abelian extension. For
a given abelian extension

0 → a
i
→ g

π
→ h → 0,

choose a linear section s : h → g of π, i.e. π ◦ s = idh. Such a section exists,
because the sequence of vector spaces is split, while s cannot be taken to be
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a morphism of Lie algebras in general. We associate to s the failure to be a
morphism of Lie algebras:

α(x, y) := s[x, y]− [s(x), s(y)],

for all x, y ∈ h. As π is a morphism of Lie algebras, we have π(α(x, y)) = 0,
thus α(x, y) has values in ker (π) = im (i) = a. We claim that α : h × h → a is
a 2-cocycle. Indeed,

−α([x, y], z)−α([y, z], x)−α([z, x], y) + x ·α(y, z)+ y ·α(z, x) + z ·α(x, y) =

= −s[[x, y], z]+[s[x, y], s(z)]−s[[y, z], x]+[s[y, z], s(x)]−s[[z, x], y]+[s[z, x], s(y)]+

+ [s(x), s[y, z]]− [s(x), [s(y), s(z)]] + [s(y), s[z, x]]− [s(y), [s(z), s(x)]]+

+ [s(z), s[x, y]]− [s(z), [s(x), s(y)]]

= [s[x, y], s(z)]+[s[y, z], s(x)]+[s[z, x], s(y)]+[s(x), s[y, z]]+[s(y), s[z, x]]+[s(z), s[x, y]] = 0

In fact, one can show that the cohomology class [α] ∈ H2(g, a) does not depend
on the choice of the section s and coincides for two equivalent abelian extensions.

In order to show the surjectivity of the map sending an equivalence class
of abelian extensions to the corresponding class [α] ∈ H2(g, a), we have to
construct an extension from a given cohomology class [α]. This goes as follows.

Define the following bracket on the vector space g := a⊕ h.

[(a, x), (b, y)] := (x · b− y · a+ α(x, y), [x, y]).

We claim that this bracket renders g a Lie algebra: The Jacobi identity follows
from the Jacobi identity in h and the cocycle identity of α. It is clear that the
2-cocycle associated to this extension is the α we started with.

Example 5.4. (a) A very basic central extension is the central extension of
every Lie algebra g by its center Z(g). For example, the center of gln(k)
is Z(gln(k)) = k, given by the homotheties. This central extension is
split, i.e. its class in H2(sln(k), k) is zero (for any field k !). In fact,
H2(sln(k), k) = 0 by Whitehead’s Lemma for k of characteristic zero.

(b) Central extensions are important in Quantum mechanics, because wave
functions are determined only up to a phase factor which may be inter-
preted as giving rise to a central extension of the structure group/Lie
algebra. For example, a famous central extension arising in physics is the
Virasoro algebra, the 1-dimensional central extension of the Lie algebra
Vect(S1) of vector fields on the circle. Vect(S1) has a basis en := xn+1 d

dx

for n ∈ Z with relations [en, em] = (m−n)en+m, and the cocycle specifying
the central extension is

α(en, em) :=
δm+n,0

12
(n3 − n).

The bracket for the Virasoro algebra Vir = C⊕Vect(S1) reads

[(a, x), (b, y)] = (α(x, y), [x, y]).

10



(c) The trivial abelian extension (i.e. the abelian extension representing the
zero class in H2(g, a)) is simply the semidirect product, i.e. the bracket

[(a, x), (b, y)] := (x · b− y · a, [x, y])

on the vector space g = a⊕ h.

(d) Another central extension which is important in physics is the Heisenberg
Lie algebra. This is the central extension of the abelian Lie algebra R2

generated by the basis x, y ∈ R2, extended by the cocycle

α(x, y) = −α(y, x) = z,

where z is the central element. Abelian Lie algebras always have lots of
cohomology and the class of α is non-zero in H2(R2,R) ∼= R2.

6 Crossed Modules of Lie algebras

In the same way as abelian extensions represent 2-cohomology, we will see later
on that crossed modules of Lie algebras represent 3-cohomology.

Definition 6.1. A crossed module of Lie algebras is the data of a homomor-
phism of Lie algebras µ : m → n together with an action η of n on m by
derivations, denoted η : n → der(m) or sometimes simply m 7→ n · m for all
m ∈ m and all n ∈ n, such that

(a) µ(n ·m) = [n, µ(m)] for all n ∈ n and all m ∈ m,

(b) µ(m) ·m′ = [m,m′] for all m,m′ ∈ m.

Remark 6.2. Property (a) means that the morphism µ is equivariant with
respect to the n-action via η on m and the adjoint action on n. Property (b) is
called Peiffer identity.

Remark 6.3. To each crossed module of Lie algebras µ : m → n, one associates
a four term exact sequence

0 → V
i
→ m

µ
→ n

π
→ g → 0

where ker (µ) =: V and g := coker (µ).

Remark 6.4. (a) By property (a), im (µ) is an ideal, and thus g is a Lie
algebra.

(b) By property (b), V is a central ideal of m, and in particular abelian.

(c) Lifting elements of g to n, the action of n on m induces an outer action of
g on m. Given linear sections ρ and ρ′ of π and an element x ∈ g, η(ρ(x))
and η(ρ′(x)) differ by the inner derivation adm′ for some m′ ∈ m. Indeed,

η(ρ(x)) − η(ρ′(x)) = η((ρ− ρ′)(x))(m)

= η(µ(m′))(m)

= [m′,m].
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Here we used property (b) in the last line, and m′ exists by exactness of
the four term sequence, because (ρ − ρ′)(x) ∈ ker (π). This means that
the expression η(ρ(x)) is well-defined up to inner isomorphism.

Moreover, η ◦ ρ satisfies the requirements of an action also up to inner
derivations. Indeed, denote for all x, y ∈ g by

α(x, y) := [ρ(x), ρ(y)]− ρ([x, y]),

the default of ρ to be a morphism of Lie algebras. Then α(x, y) ∈ ker (π),
because π is a morphism and ρ a section of π. Therefore by exactness of
the four term sequence, there exists β(x, y) ∈ m such that

µ(β(x, y)) = α(x, y).

Then to show that η ◦ ρ is an action, we have to consider η([ρ(x), ρ(y)] −
ρ([x, y]))(m) for some m ∈ m. But this gives

η(α(x, y))(m) = η(µ(β(x, y)))(m) = [β(x, y),m]

by property (b), and in this sense, an outer action is an action up to inner
derivations.

Now property (a) implies that the restriction of this outer action to V
induces the structure of a g-module on V .

(d) Note that by this lifting procedure, the action η (resp. the adjoint action)
does not in general render m (resp. n) a g-module.

Example 6.5. Let us list some elementary examples of crossed modules:

(a) Each central extension is a crossed module. Indeed, central extensions
correspond exactly to the case where the map µ is surjective.

(b) Each (inclusion of an) ideal in a Lie algebra constitutes a crossed module.
Indeed, an (inclusion of an) ideal correspond exactly to the case where the
map µ is injective.

(c) For each Lie algebra l, there is a canonical crossed module

µ : l → der (l),

where µ sends an element x ∈ l to the inner derivation ad x defined by
ad x(y) = [x, y] for all y ∈ l. The action of der (l) on l is the usual action
as a derivation. The kernel of µ is the center z(l) of l and the cokernel of
µ is the Lie algebra of outer derivations

out (l) := der (l)/ad (l).

12



Definition 6.6. Two crossed modules µ : m → n (with action η) and µ′ :
m′ → n′ (with action η′) such that ker (µ) = ker (µ′) =: V and coker (µ) =
coker (µ′) =: g are called elementary equivalent if there are morphisms of Lie
algebras ϕ : m → m′ and ψ : n → n′ which are compatible with the actions,
meaning

ϕ(η(n)(m)) = η′(ψ(n))(ϕ(m)),

for all n ∈ n and allm ∈ m, and such that the following diagram is commutative:

0 // V

idV

��

i // m

ϕ

��

µ // n

ψ

��

π // g

idg

��

// 0

0 // V
i′ // m′

µ′

// n′
π′

// g // 0

We call equivalence of crossed modules the equivalence relation generated by
elementary equivalence. One easily sees that two crossed modules are equivalent
in case there exists a zig-zag of elementary equivalences going from one to the
other (which are not necessarily going all in the same direction).

Let us denote by crmod(g, V ) the set of equivalence classes of Lie algebra
crossed modules with respect to fixed kernel V and fixed cokernel g.

Remark 6.7. Compare this equivalence relation to the equivalence of two
abelian extensions, cf Definition 5.2. In the framework of extensions, equiv-
alence imposes the underlying vector space of the extension up to isomorphism.
For crossed modules, this is not the case, and leads thus to much more different
representatives of the equivalence class of a crossed module.

We will now define the sum of two crossed modules. Consider two crossed
modules µ : m → n and µ′ : m′ → n′ with isomorphic kernel and cokernel and
their corresponding four term exact sequences

0 → V
i
→ m

µ
→ n

π
→ g → 0

and

0 → V
i′

→ m′ µ
′

→ n′
π′

→ g → 0.

Denote by K := {(v,−v) ∈ V ⊕V } the kernel of the addition map V ⊕V →
V . Notice that the diagonal △ : V → V ⊕ V followed by the quotient map
V ⊕ V → (V ⊕ V )/K identifies V and (V ⊕ V )/K. K can be considered as a
subspace in m ⊕ m′ via i ⊕ i′. As V is central in m and m′, K is an ideal of
m⊕m′.

Denote by n ⊕g n′ the pullback associated to the maps π : n → g and
π′ : n′ → g. More explicitly,

n⊕g n
′ = {(n, n′) ∈ n⊕ n′ |π(n) = π′(n′)}.

Notice that the two maps π : (n⊕gn
′) → g and 1

2 (π+π
′) : (n⊕gn

′) → g coincide
(because in our base field, 2 is invertible).

With these preparations, we have the following definition:

13



Definition 6.8. The sum of two crossed modules µ : m → n and µ′ : m′ → n′

such that ker (µ) = ker (µ′) = V and coker (µ) = coker (µ) = g is by definition
the crossed module

0 → V
(i⊕i′)◦△
−→ (m⊕m′)/K

µ⊕µ′

→ (n⊕g n
′)

π
→ g → 0

The action of n⊕g n
′ on (m⊕m′)/K by derivations is induced from the sum

of actions on the two summands. The compatibility relations (a) and (b) of
Definition 6.1 are true in the direct sum, thus true for the crossed module sum.

Lemma 6.9. The sum of crossed modules defines an abelian group structure on
the set of equivalence classes of crossed modules crmod(g, V ) with given kernel
V and cokernel g.

Proof. It is clear that the sum of crossed modules is associative and commutative
as it is induced by the direct sum. It is equally clear that the sum is compatible
with the equivalence relation as we can sum the maps giving the equivalences.

We have to show that there is a zero element and an inverse to every crossed
module. We define the zero crossed module with given kernel V and cokernel g
to be

0 → V
idV→ V

0
→ g

idg

→ g → 0

and the inverse of a crossed module

0 → V
i
→ m → n → g → 0

to be
0 → V

−i
→ m → n → g → 0.

In order to show that this crossed module is inverse to the given one, notice
that crmod(g,−) is an additive functor. Thus we have for an equivalence class
[µ : m → n] ∈ crmod(g, V )

(α1 + α2)[µ : m → n] = α1[µ : m → n] + α2[µ : m → n],

where αi : V → V ′ (i = 1, 2) are two g-module morphisms. This reduces
the proof to showing that pushforward by the zero map 0 : V → V gives the
zero class. Now, pushforward by the zero map splits up a direct factor V in
(V ⊕m)/(0⊕ (−i(V ))) and we have then a commutative diagram

0 // V

0

��

i // m
µ //

incl2

��

n
π //

idn

��

g

idg

��

// 0

0 // V //

idV

��

(V ⊕m)/(0⊕ (−i(V )))
0⊕µ//

proj1

��

n
π //

π

��

g //

idg

��

0

0 // V
idV // V

0 // g
idg // g // 0

14



Here incl2 and proj2 are the standard inclusions and projections to/from the
direct sum. This shows that the class 0[µ : m → n] is the zero class.

Crossed modules may serve as explicit representatives of third cohomology
classes, this is the essence of the following theorem, which Mac Lane attributes
to Gerstenhaber:

Theorem 6.10. There is an isomorphism of abelian groups

b : crmod(g, V ) ∼= H3(g, V ).

In a first step, we will only discuss in this section how to associate a coho-
mology class in H3(g, V ) to a given crossed module.

Let us show how to associate to a crossed module a 3-cocycle of g with values
in V . For this, recall the exact sequence from Remark 6.3:

0 → V
i
→ m

µ
→ n

π
→ g → 0

The first step is to take a linear section ρ of π and to compute the failure of
ρ to be a Lie algebra homomorphism, i.e.

α(x1, x2) = [ρ(x1), ρ(x2)]− ρ([x1, x2]).

Here, x1, x2 ∈ g. α is bilinear and skewsymmetric in x1, x2. We have obvi-
ously π(α(x1, x2)) = 0, because π is a Lie algebra homomorphism, so α(x1, x2) ∈
im (µ) = ker (π). This means by exactness that there exists β(x1, x2) ∈ m such
that

µ(β(x1, x2)) = α(x1, x2).

Choosing a linear section σ on im (µ), one can choose β as

β(x1, x2) = σ(α(x1, x2)) (1)

showing that we can suppose β bilinear and skewsymmetric in x1, x2.
Now, µ(dβ(x1, x2, x3)) = 0 by the following lemma:

Lemma 6.11. µ(dβ(x1, x2, x3)) = 0 where d is the formal expression of the Lie
algebra cohomology boundary operator corresponding to cohomology of g with
values in m, and x1, x2, x3 ∈ g.
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Proof.

µ(dβ(x1, x2, x3)) = µ
(∑

cycl.

β([x1, x2], x3)−
∑

cycl.

η(ρ(x1)) · β(x2, x3)
)

=
∑

cycl.

α([x1, x2], x3)−
∑

cycl.

[ρ(x1), µ(β(x2, x3))]

=
∑

cycl.

α([x1, x2], x3)−
∑

cycl.

[ρ(x1), α(x2, x3)]

=
∑

cycl.

(
[ρ([x1, x2]), ρ(x3)]− ρ([[x1, x2], x3])]

)

−
∑

cycl.

(
[ρ(x1), [ρ(x2), ρ(x3)]] + [ρ(x1), ρ([x2, x3])]

)
= 0.

This means that dβ(x1, x2, x3) ∈ ker (µ) = im (i) = i(V ), i.e. there ex-
ists γ(x1, x2, x3) ∈ V such that dβ(x1, x2, x3) = i(γ(x1, x2, x3)). The explicit
formula of dβ(x1, x2, x3) shows trilinearity and skewsymmetry in the three vari-
ables x1, x2 and x3. Choosing a linear section τ on i(V ) = ker (µ), one can
choose γ to be τ ◦ dβ (in the obvious sense) gaining that γ is also trilinear and
skewsymmetric in x1, x2 and x3. By the following lemma, γ is a 3-cocycle of g
with values in V :

Lemma 6.12. γ is a 3-cocycle of g with values in V .

Proof. We have to show that dγ(x1, x2, x3, x4) = 0, denoting by x1, x2, x3, x4
four elements of g and by d the Lie algebra coboundary operator of g with
values in V . The expression for dγ(x1, x2, x3, x4) is the sum of ”action terms”
and ”bracket terms”. It is enough to show i(dγ(x1, x2, x3, x4)) = 0.

i(dγ(x1, x2, x3, x4)) = di(γ(x1, x2, x3, x4))

= d ◦ dβ(x1, x2, x3, x4).

One has to be careful because d ◦ d is not automatically zero, because of the
fact that η ◦ ρ is not an action of g on m in general. Let us display here only
some terms of it, while the other terms vanish as usual. The terms we choose
are all ”action terms of the action terms” and some ”action terms of the bracket
terms”.

i(dγ(x1, x2, x3, x4)) =
∑

1≤i<j≤4

(−1)i+jη(ρ([xi, xj ]))β(x1, . . . , x̂i, . . . , x̂j , . . . , x4)

−
4∑

i=1

(−1)iη(ρ(xi))
3∑

l=1

(−1)lη(ρ(zl))β(z1, . . . , ẑl, . . . , z3).
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Here, we denote by z1, z2, z3 the three remaining xr after having chosen
xi from the list. Now, the difference of acting by η(ρ([x, y])) and acting by
η(ρ(x))η(ρ(y))−η(ρ(y))η(ρ(x)) is just the action by η(α(x, y)). Calculating the
differences of the actions by the bracket and the action of the single elements
gives thus terms of the form

η(α(x, y))β(u, v) = η(µ(β(x, y)))β(u, v) = [β(x, y), β(u, v)],

where the last equality follows from property (b) in Definition 6.1. Then the
sum reads

[β(x1, x2), β(x3, x4)]− [β(x2, x3), β(x4, x1)] + [β(x3, x4), β(x1, x2)]

−[β(x4, x1), β(x2, x3)] + [β(x4, x2), β(x1, x3)]− [β(x1, x3), β(x2, x4)]

and vanishes.

Lemma 6.13. The class of the cocycle γ in C3(g, V ) does not depend on the
choice of the sections ρ, σ and τ .

Proof. (1) Let ρ and ρ′ be two sections of π. Denote by α(x, y) resp. α′(x, y),
β(x, y) resp. β′(x, y), γ(x, y, z) resp. γ′(x, y, z) the elements of n, m and V
constructed above with respect to ρ and ρ′. Here x, y, z ∈ g. By construction,
we have

ρ′(x) = ρ(x) + δ(x),

for some linear map δ : g → ker (π) ⊂ n. But then α′ may be written

α′(x, y) = [ρ′(x), ρ′(y)]− ρ′([x, y])

= [(ρ+ δ)(x), (ρ + δ)(y)]− (ρ+ δ)([x, y])

= α(x, y) + [ρ(x), δ(y)] + [δ(x), ρ(y)] + [δ(x), δ(y)] − δ([x, y]).

Observe that the expression [ρ(x), δ(y)]+[δ(x), ρ(y)]−δ([x, y]) is just the formal
coboundary dδ(x, y), where δ : g → n is considered as a cochain with values in n

although lifting elements, n is in general not a g-module via the adjoint action.
As dδ(x, y) lies in the kernel of π, there exists ǫ(x, y) ∈ m such that µ◦ǫ = dδ,

and as before, we may take ǫ bilinear. In the same way, as [δ(x), δ(y)] is in ker (ǫ),
there exists θ(x, y) ∈ m with µθ(x, y) = [δ(x), δ(y)]. Therefore we get

µβ′(x, y) = µβ(x, y) + µǫ(x, y) + µθ(x, y),

and hence there exists an element in ker (µ) = im (i), denoted i(ζ), such that

β′(x, y) = β(x, y) + ǫ(x, y) + θ(x, y) + i(ζ)(x, y).

When applying in the next step d to all terms, the ζ will give a coboundary,
because d(i(ζ)) = i(dV ζ). Let us treat the term ǫ(x, y). Observe that using the
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linear section σ on im (µ), we have ǫ = σdδ. Actually, we have

µ
(
σdδ(x, y) − dσδ(x, y)

)
= µσ

(
ρ(x) · δ(y)− ρ(y) · δ(x) + δ([x, y])

)

− µ
(
η(ρ(x))(σδ(y)) + η(ρ(y))(σδ(x)) − σδ([x, y])

)

= 0,

using property (a) of a crossed module. This means that the difference is in the
kernel of µ, thus in the image of i, and replacing ǫ by dσδ adds only another
coboundary in the end. A similar reasoning applies to the term θ(x, y). In
conclusion, we have shown that changing the section ρ results in changing the
cocycle γ by a coboundary.

(2) Now suppose that we chose two different linear sections σ and σ′ of
µ on im (µ), leading to different lifts β = σα and β′ = σ′α. We have then
β − β′ ∈ ker (µ) = im (i), and we have already seen that this leads to the
corresponding γ and γ′ differing by a coboundary.

(3) Two sections τ and τ ′ of i have to be the same; they are both inverses
of the isomorphism i on its image.

Lemma 6.14. Let µ : m → n (with action η) and µ′ : m′ → n′ (with action
η′) such that ker (µ) = ker (µ′) =: V and coker (µ) = coker (µ′) =: g be two
elementary equivalent crossed modules.

Then the corresponding cohomology classes b([µ]) = [γ] and b([µ′]) = [γ′]
coincide in H3(g, V ).

Proof. Denote by (ϕ, ψ) the morphism rendering the two crossed modules el-
ementary equivalent, see Definition 6.6. Denote further by γ (resp. γ′) the
cocycle associated to µ : m → n (resp. to µ′ : m′ → n′) by choosing sections ρ,
σ and τ (resp. ρ′, σ′ and τ ′) as in the preceding Lemma.
ρ being a section of π, ρ̃′ := ψ ◦ ρ is a section of π′. Lemma 6.13 shows that α′

(defined by the section ρ′) and α̃′ := ψ ◦ α (defined by the section ρ̃′) give rise
to the same cohomology class [γ′] represented by γ′.

Now let us compute

(d̃(σ′ ◦ ψ ◦ α)− d̃(ϕ ◦ β))(x, y, z)

for x, y, z ∈ g where d̃ is the formal Lie algebra coboundary operator with values
in m′ and with the formal action η′ ◦ ψ ◦ ρ. Let us call β̃′ := σ′ ◦ ψ ◦ α.

First we remark that (β̃′−ϕ◦β)(x, y) ∈ ker (µ′), thus we introduce v(x, y) ∈
V such that (β̃′ − ϕ ◦ β)(x, y) = i′v(x, y) for all x, y ∈ g. A computation using
that (ϕ, ψ) satisfies the conditions of Definition 6.6 shows that

d̃(ϕ ◦ β)(x, y, z) = ϕ(dβ(x, y, z)).

Another computation shows that (d̃i′v)(x, y, z) = i′(dv(x, y, z)). We thus obtain

(γ′ − γ)(x, y, z) = dv(x, y, z),

showing that the two elementary equivalent crossed modules have the same
cohomology class.
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In conclusion, we have constructed a well-defined map b associating to an
equivalence class of crossed modules with kernel V and cokernel g a cohomology
class in H3(g, V ). Theorem 6.10 states that this map is an isomorphism of
abelian groups.

7 Construction of crossed modules

In order to motivate the construction procedure which we present below let us
go back to the four term exact sequence associated to a crossed module:

0 → V
i
→ m

µ
→ n

π
→ g → 0

We have already seen that this is an exact sequence of Lie algebras. We
derive from it now two short exact sequences of Lie algebras:

0 → m/i(V )
µ
→ n

π
→ g → 0,

and
0 → V

i
→ m

µ
→ im (µ) → 0.

Obviously, the crossed module µ : m → n can be seen as the gluing of these
two short exact sequences. The second sequence is a central extension, whereas
the first is not in general, not even an abelian extension in general. We call this
a general extension of Lie algebras.

Let us ask (some version of) the converse question: Given a Lie algebra g, a
short exact sequence of g-modules

0 → V1 → V2 → V3 → 0 (2)

(regarded as a short exact sequence of abelian Lie algebras) and an abelian
extension e of g by the abelian Lie algebra V3

0 → V3 → e → g → 0, (3)

is the Yoneda product of the sequences in Equations (2) and (3) a crossed
module ? In case the sequence (3) is given by a 2-cocycle α, we continue to use
the notation e = V3 ×α g.

Theorem 7.1. In the above situation, the gluing of sequences (2) and (3) is a
crossed module, the associated 3-cocycle of which is the image of the 2-cocycle
defining the central extension (3) under the connecting homomorphism in the
long exact cohomology sequence associated to the coefficient sequence (2).

Proof. Gluing the sequences in Equations (2) and (3) together, one obtains a
map

µ : V2 → e. (4)

Writing e = V2 ⊕ g as vector spaces, we have µ(v) = (v, 0). On the other hand,
the e-action η on V2 is induced by the action of g on V2: η(w, x)(v) := x · v,
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where (w, x) ∈ e, v ∈ V2. With these structures, condition (b) for a Lie algebra
crossed module is trivially true, while condition (a) is true by definition of the
bracket in the abelian extension: µ(η(w, x)(v)) = (x · v, 0) = [(w, x), (v, 0)].

Now let us discuss the second claim. The short exact sequence (2) induces
a short exact sequence of complexes

0 → C∗(g, V1)
i
→ C∗(g, V2)

π
→ C∗(g, V3) → 0.

Take a cocycle α ∈ C2(g, V3), then the connecting homomorphism ∂ : C2(g, V3) →
C3(g, V1) is defined as follows:

β ∈ π−1(α)
❴

✤
π // α

❴

C2(g, V1) // i //

dV1

��

C2(g, V2)
π // //

dV2

C2(g, V3)

dV3

C3(g, V1) // i // C3(g, V2)

��

π // // C3(g, V3)

��
∂α := i−1(dV2β)

✤
i // dV2β

✤
π // 0 = dV3α

Here we wrote elements on top resp. on bottom of the corresponding spaces,
and denoted by dV1 , dV2 and dV3 the Lie algebra coboundaries with values in V1,
V2 and V3 respectively. Summarizing, ∂α is constructed by choosing an element
β preimage of α under π, taking dV2β and taking an preimage of dV2β under i. It
is obvious that this is exactly how we constructed the 3-cocycle γ corresponding
to a crossed module. Having stated the coincidence of the two constructions,
it remains to take for α ∈ C2(g, V3) the cocycle defining the abelian extension
(3).

Now we can end the proof of Theorem 6.10 using the previous construction.
Surjectivity of the map b from Theorem 6.10:

We have to show that given a cohomology class [γ] ∈ H3(g, V ), there is a
crossed module whose associated class is [γ]. V is here some g-module. As the
category of g-modules posesses enough injectives, there is an injective g-module
I and a monomorphism i : V →֒ I. Consider now the short exact sequence of
g-modules:

0 → V → I → Q→ 0

where Q is the cokernel of i. As I is injective, the long exact sequence in coho-
mology givesH2(g, Q) ∼= H3(g, V ). Thus [γ] corresponds under the isomorphism
(which is induced by the connecting homomorphism) to a class [α] ∈ H2(g, Q),
and the principal construction applied to the above short exact sequence of g-
modules and the abelian extension of g by Q using the cocycle α gives a crossed
module whose class is a preimage under b of [γ].
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Injectivity of the map b from Theorem 6.10:

It is clear that b is a homomorphism of abelian groups. Thus in order to
show the injectivity of b, it suffices to show that its kernel is trivial.

(a) A crossed module

0 → V
i
→ m

µ
→ n → g → 0

corresponding to the trivial cohomology class gives rise to a general ex-
tension

0 → m → e → g → 0.

Indeed, if [θ] = 0, there exists ω ∈ C2(g, V ) such that dω = θ. Set
ζ := β(x, y) − i(ω(x, y)) for x, y ∈ g. Then

dζ = dβ − diω = dβ − i(dω) = dβ − i(i−1(dβ)) = 0,

thus there exists an extension of g by m using the cocycle ζ ∈ Z2(g,m).

(b) We now use this extension to construct a morphism of crossed modules.
As a vector space, e = m⊕ g. We fix such a decomposition of e and call it
product coordinates.

Lemma 7.2. The map m written in product coordinates as m : m⊕ g →
im (µ) ⊕ g, (a, x) 7→ m(a, x) = (µ(a), x) induces a morphism of crossed
modules

0 // m

idm

��

// e //

m

��

g

idg

��

// 0

0 // V
i // m

µ // n
π // g // 0

Proof. The bracket in n reads in product coordinates

[(a, x), (b, y)] = ([a, b] + x · b− y · a+ α(x, y), [x, y]),

and the one in e reads

[(a, x), (b, y)] = ([a, b] + x · b− y · a+ ζ(x, y), [x, y]).

Now, applying µ to the first component of the lower bracket gives the first
component of the upper bracket thanks to the axioms of a crossed module
and to µβ = α. The map is also compatible with the actions.

(c) The third step is to prove the following lemma:
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Lemma 7.3. If a crossed module

0 → V → m
µ
→ n → g → 0

admits a morphism

0 // m

idm

��

ϕ // e
ψ //

m

��

g

idg

��

// 0

0 // V
i // m

µ // n
π // g // 0,

then it represents the zero equivalence class.

Proof. Indeed, in case there is a morphism as indicated, we have a com-
mutative diagram

0 // V
idV // V

0 // g
idg // g // 0

0 // V

idV

��

incl1//

idV

OO

V ⊕m

i+proj2

��

0+ϕ //

proj1

OO

e

ψ

OO

ψ //

m

��

g

idg

��

//

idg

OO

0

0 // V
i // m

µ // n
π // g // 0

Thus µ : m → n represents the zero class (as equivalence class of crossed
modules). We denoted by incl1 and proj2 once again the standard inclu-
sion and projection maps. This concludes the proof of the Lemma, the
injectivity of the map b, and thus the proof of Theorem 6.10.

Corollary 7.4. Every crossed module is equivalent to one coming from the
principal construction.

8 Crossed modules as strict Lie 2-algebras

Here we highlight the interpretation of crossed modules of Lie algebras as strict
Lie 2-algebras. A Lie 2-algebra is a categorified version of a Lie algebra. Cat-
egorification means the procedure of replacing in an algebraic structure the
underlying sets and maps by categories and functors. This gives new, more
sophisticated algebraic structures which are useful in physics in the context of
higher gauge theory and in categorified representation theory which strives to
define more powerful knot invariants, for example.
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8.1 Categories and functors

A category C consists of a class (in general not a set !) of objects, ObC , together
with for any pair of objects X,Y ∈ ObC , a set of morphisms Mor(X,Y ) from
X to Y and a composition map

comp : MorC(X,Y )×MorC(Y, Z) → MorC(X,Z)

such that

(1) For any X ∈ ObC , there is a distinguished idX ∈ MorC(X,X).

(2) The composition comp is associative.

(3) The morphism idX is a left and right unit with respect to comp.

Categories have mainly two uses: On the one hand, they provide a more
abstract level to carry out some constructions and permit to better understand
them. This is the category theory which deals with large categories like for
example the category of sets Sets, the category of groups Grp or the category
of k-vector spaces Vect. In all these three cases, the objects of the category
are indicated (i.e. are sets, groups resp. k-vector spaces), while the morphisms
are structure preserving maps (i.e. maps, group homomorphisms resp. k-linear
maps). There are logical problems arising when dealing with large categories
like the category of sets and we do not want to discuss how they are going to
be solved, but they can be solved.

On the other hand, there are small categories which are categories where
the class of objects forms a set. These are the categories which are studied as
an algebraic structure: A category can be understood in this sense as a monoid
with many objects (i.e. a monoid where not all elements are composable). We
will take this latter point of view in the following.

As always in algebra, after introducing the objects which are studied, one
has to introduce the structure preserving morphisms. For categories, these are
the functors. A functor F : C → D is a prescription assigning to each object
X ∈ ObC an object F(X) ∈ ObD and to each morphism f ∈ MorC(X,Y ) a
morphism F(f) ∈ MorD(F(X),F(Y )) such that identities are sent to identities
and compositions are sent to compositions.

Many constructions in mathematics are functorial, i.e. con be interpreted
as functors between categories. For example, the free group on a set defines a
functor from Sets to Grp which is related to the functor U : Grp → Sets which
sends a group G to its underlying set U(G) which is nothing but the set G.

8.2 Strict 2-vector spaces and 2-term complexes

Fix a field k of characteristic 0. In these notes, a 2-vector space V over k is
simply a category object in Vect, the category of vector spaces. This means
that V consists of a vector space of arrows V1, a vector space of objects V0, linear
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maps V1
s //
t

// V0 called source and target, a linear map i : V0 → V1, called

object inclusion, and a linear map

m : V1 ×V0
V1 → V1,

which is called the categorical composition. These data are supposed to satisfy
the usual axioms of a category.

An equivalent point of view is to view a 2-vector space as a 2-term chain
complex of vector spaces d : C1 → C0. The equivalence is spelt out as follows:

One passes from a category object in Vect (given by V1
s //
t

// V0 , i : V0 → V1

etc) to a 2-term complex d : C1 → C0 by taking C1 := ker(s), d := t|ker(s) and
C0 = V0. In the reverse direction, to a given 2-term complex d : C1 → C0, one
associates V1 = C0 ⊕ C1, V0 = C0, s(c0, c1) = c0, t(c0, c1) = c0 + d(c1), and
i(c0) = (c0, 0). The only subtle point is here that the categorical composition

m is already determined by V1
s //
t

// V0 and i : V0 → V1. Namely, writing an

arrow c1 =: f with s(f) = x, t(f) = y, i.e. f : x 7→ y, one denotes the arrow

part of f by ~f := f − i(s(f)), and for two composable arrows f, g ∈ V1, the
composition m is then defined by

f ◦ g := m(f, g) := i(x) + ~f + ~g.

Observe that we use here Baez-Crans convention on the composition, i.e. we
compose from left to right (the source of f ◦ g is the source of f and not the
source of g like in usual composition).

8.3 Strict Lie 2-algebras and crossed modules

Definition 8.1. A strict Lie 2-algebra is a category object in the category Lie

of Lie algebras over k.

This means that it is the data of two Lie algebras, g0, the Lie algebra of ob-
jects, and g1, the Lie algebra of arrows, together with morphisms of Lie algebras
s, t : g1 → g0, source and target, a morphism i : g0 → g1, the object inclusion,
and a morphism m : g1 ×g0

g1 → g1, the composition of arrows, such that the
usual axioms of a category are satisfied.

Theorem 8.2. Strict Lie 2-algebras are in one-to-one correspondence with
crossed modules of Lie algebras.

Proof. Given a Lie 2-algebra g1
s //
t

// g0 , i : g0 → g1, the corresponding

crossed module is defined by

µ := t|ker(s) : m := ker(s) → n := g0.

The action of n on m is given by

n ·m := [i(n),m],
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for n ∈ n and m ∈ m (where the bracket is taken in g1). This is well defined
and an action by derivations. Axiom (a) follows from

µ(n ·m) = µ([i(n),m]) = [µ ◦ i(n), µ(m)] = [n, µ(m)].

Axiom (b) follows from

µ(m) ·m′ = [i ◦ µ(m),m′] = [i ◦ t(m),m′] = [m+ r,m′] = [m,m′]

by writing i ◦ t(m) = m+ r with r ∈ ker(t) and by using that ker(t) and ker(s)
in a Lie 2-algebra commute. This is shown in Lemma 8.3 after the proof.

On the other hand, given a crossed module of Lie algebras µ : m → n,
associate to it

m⋊ n
s //
t

// n , i : n → m⋊ n

with s(m,n) = n, t(m,n) = µ(m)+n, i(n) = (0, n), where the semi-direct prod-
uct Lie algebra m⋊n is built from the given action of n on m. Let us emphasize
that m ⋊ n is built from the Lie algebra n and the n-module m; the bracket of
m does not intervene here. The composition of arrows is already encoded in the
underlying structure of 2-vector space, as remarked in the previous subsection.
In the second lemma below, we show that the composition is a morphism of Lie
algebras.

Lemma 8.3. [ker(s), ker(t)] = 0 in a Lie 2-algebra.

Proof. The fact that the composition of arrows is a homomorphism of Lie alge-
bras gives the following “middle four exchange” (or functoriality) property

[g1, g2] ◦ [f1, f2] = [g1 ◦ f1, g2 ◦ f2]

for composable arrows f1, f2, g1, g2 ∈ g1. Now suppose that g1 ∈ ker(s) and
f2 ∈ ker(t). Then denote by f1 and by g2 the identity (w.r.t. the composition)
in 0 ∈ g0. As these are identities, we have g1 = g1 ◦ f1 and f2 = g2 ◦ f2. On
the other hand, i is a morphism of Lie algebras and sends 0 ∈ g0 to the 0 ∈ g1.
Therefore we may conclude

[g1, f2] = [g1 ◦ f1, g2 ◦ f2] = [g1, g2] ◦ [f1, f2] = 0.

Lemma 8.4. Given a crossed module of Lie algebras µ : m → n, the composition

of the underlying 2-vector space of the precategory m⋊ n
s //
t

// n is a morphism

of Lie algebras.

Proof. Every morphism f = (m,n) ∈ m ⋊ n is described in the underlying
2-vector space by its starting point s(f) = s(m,n) = n and its arrow part
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~f = f − i(s(f)) = (m, 0). We have to show the double-four-echange law, i.e. for
composable arrows f1, f2, g1, g2 we need to show

[g1 ◦ f1, g2 ◦ f2] = [g1, g2] ◦ [f1, f2].

Here it is understood that gi : xi 7→ yi and fi : yi 7→ zi for i = 1, 2. The fact
that the two are composable means that t(gi) = yi = s(fi) for i = 1, 2. Now
translate all this into elements of the semidirect product. We call gi = (mi, ni)
and fi = (m′

i, n
′
i) for i = 1, 2, and the composability means now t(mi, ni) =

µ(mi) + ni = n′
i = s(fi) for i = 1, 2.

We compute

[g1 ◦ f1, g2 ◦ f2] = [i(s(g1)) + ~g1 + ~f1, i(s(g2)) + ~g2 + ~f2]

= [(0, n1) + (m1, 0) + (m′
1, 0), (0, n2) + (m2, 0) + (m′

2, 0)]

= [(m1 +m′
1, n1), (m2 +m′

2, n2)]

= ([m1 +m′
1,m2 +m′

2] + n1 · (m2 +m′
2)− n2 · (m1 +m′

1), [n1, n2]).

This is to compare with

[g1, g2] ◦ [f1, f2] = i(s([g1, g2])) +
−−−−→
[g1, g2] +

−−−−→
[f1, f2]

= ([m1,m2] + n1 ·m2 − n2 ·m1 +

+ [m′
1,m

′
2] + n′

1 ·m
′
2 − n′

2 ·m
′
1, [n1, n2])

because

[g1, g2] = [(m1, n1), (m2, n2)]

= ([m1,m2] + n1 ·m2 − n2 ·m1, [n1, n2])

and −−−−→
[g1, g2] = ([m1,m2] + n1 ·m2 − n2 ·m1, 0)

and −−−−→
[f1, f2] = ([m′

1,m
′
2] + n′

1 ·m
′
2 − n′

2 ·m
′
1, 0).

The equality of these two expressions now follows from the following compu-
tation, where we use the µ(mi) + ni = n′

i for i = 1, 2 and property (b) (i.e.
µ(m) ·m′ = [m,m′]):

[m′
1,m2] + [m1,m

′
2] + n1 ·m

′
2 − n2 ·m

′
1 − n′

1 ·m2 + n′
2 ·m

′
1 =

= [m′
1,m2] + [m1,m

′
2] + n1 ·m

′
2 − n2 ·m

′
1 − (n1 + µ(m1)) ·m

′
2 + (n2 + µ(m2)) ·m

′
1 =

= [m′
1,m2] + [m1,m

′
2]− µ(m1) ·m2 + µ(m2) ·m

′
1 = 0.

Remark 8.5. (a) It is implicit in the previous proof that starting from a

crossed module µ : m → n, passing to the Lie 2-algebra g1
s //
t

// g0 ,
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i : g0 → g1 (and thus forgetting the bracket on m !), one may finally
reconstruct the bracket on m. This is due to the fact that the bracket on
m is encoded in the action by the property (b) of a crossed module

[m,m′] = µ(m) ·m′.

(b) It is shown in Corollary 7.4 that for a given third cohomology class (or,
equivalently, for a given equivalence class of crossed modules), there is a
crossed module µ : m → n representing this class such that the bracket on
m is trivial.
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