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theorem

Friedrich Wagemann

The goal of this project is to show Gerstenhaber’s theorem using relative

crossed modules. This approach is due to Kassel and Loday in Fix a surjective
morphism of Lie algebras π : n → g and a g-module V .

Definition 0.1. Two crossed modules µi : mi → n for i = 1, 2 are called
relatively equivalent if there exists a homomorphism of Lie algebras ϕ : n1 → n2
such that the diagram

0 // V

idV

��

i1 // m1

ϕ

��

µ1 // n

idn

��

π // g

idg

��

// 0

0 // V
i2 // m2

µ2 // n
π // g // 0

is commutative and such that ϕ is equivariant for the actions ηi of n on mi

for i = 1, 2.

Remark 0.2. By the Five Lemma, the homomorphism ϕ is necessarily an
isomorphism. Therefore, it is clear that relative equivalence is an equivalence
relation.

The main theorem on relative crossed modules reads then:

Theorem 0.3. There is a natural bijection

crmod(g, n, V ) ∼= H3(g, n, V )

between the set of relative equivalence classes of crossed modules µ : m → n with

fixed quotient morphism π : n → g and fixed g-module V = ker(µ), and the third

relative cohomology group H3(g, n, V ).

Proof. Let µ : m → n be a crossed module with quotient morphism π : n → g

and with ker(µ) identified with V as a g-module. Kassel and Loday associate
to the crossed module µ a 2-cochain f with values in V associated to a section
s : g → n of π and a section σ : im (µ) = ker(π) → m of µ. For all x, y ∈ g, they
set

g(x, y) = σ([s(x), s(y)] − s[x, y]) ∈ m.
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This corresponds to our β(x, y). Furthermore, they set for all n ∈ n

Ψ(n) = σ(n− s ◦ π(n)) ∈ m.

With these notations, they define

f(n, n′) = g(π(n), π(n′))− n′
·Ψ(n) + n ·Ψ(n′)− [Ψ(n),Ψ(n′)]−Ψ[n, n′].

This 2-cochain in defined on n. Show that f has values in V .
Kassel and Loday need a relative cocycle. The complex of relative Lie algebra

cohomology is by definition the following quotient complex

0 → C∗(g, V )
π∗

→ C∗(n, V )
κ∗

→ C∗(g, n, V ) → 0.

The relative cocycle they associate to the crossed module µ is defined to be
κ∗f ∈ C2(g, n, V ). The cohomology in C2(g, n, V ) is denoted H3(g, n, V ). In
order to show that κ∗f is a cocycle, Kassel and Loday introduce a cochain k

defined by

k(x, y, z) =
∑

cycl.

g(x, [y, z]) +
∑

cycl.

s(x) · g(y, z) ∈ V.

Now the situation is the following:

C2(g, V )
π∗

//

d

��

C2(n, V )
κ∗

//

d

��

C2(g, n, V )

d

��
C3(g, V )

π∗

// C3(n, V )
κ∗

// C3(g, n, V )

Show that df = π∗k. This identity then implies that dκ∗f = κ∗df = κ∗π∗f =
0, and therefore κ∗f is a cocycle.

What we have done so far can be resumed in the existence of a well-defined
map

crmod(g, n, V ) → H3(g, n, V ), [µ : m → n] 7→ [κ∗f ].

Conversely, suppose given a cocycle in C2(g, n, V ) which we lift to a cochain
f ∈ C2(n, V ). As κ∗f is a cocycle, we have a cochain k ∈ C3(g, V ) such that
df = π∗k. In particular, the restriction of f to ker(π) =: l gives a a cocycle
in C2(l, V ). We get thus a Lie algebra structure on the direct sum m = V ⊕ l

which makes it a central extension using the bracket

[(z, l), (z′, l′)] = (f(l1, l2), [l1, l2]).

Restriction onto n× l, we obtain from f an action of n on m by the formula

n · (z, l) = (π(n) · z + f(n, l), [n, l]).

Check that with these data, the map µ : m → n, given by (z, l) 7→ l, is a
crossed module. Show that the addition of a coboundary to f does not affect
the (relative) equivalence class of this crossed module.
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We thus get a well-defined map

H3(g, n, V ) → crmod(g, n, V ), [κ∗f ] 7→ [µ : m → n].

By construction, we obtain as associated cohomology class to this crossed
module the class of f . In the other direction, show that the two maps also
compose to the identity.

Remark 0.4. The relation of the relative class [κ∗f ] ∈ H3(g, n, V ) to the
absolute class [dS θ̃] ∈ H3(g, V ) is given by the connecting homomorphism in
the long exact sequence in cohomology associated to the short exact sequence
of complexes

0 → C∗(g, V )
π∗

→ C∗(n, V )
κ∗

→ C∗(g, n, V ) → 0.

Indeed, by definition of the connecting homomorphism ∂, the image ∂(κ∗f) is
obtained by first lifting κ∗f to a cochain in C2(n, V ), for which we may take f ,
then by taking its coboundary df and finally by identifying df with the image
π∗k of some element k ∈ C3(g, V ). By definition, [∂(κ∗f)] is then set to be
[∂(κ∗f)] = [k]. We see that the connecting homomorphism ∂ sends Kassel-
Loday’s relative class to the absolute class.

In order to state this once again more neatly, introduce the forgetting map
D : crmod(g, n, V ) → crmod(g, V ) which forgets the fixed quotient morphism
π : n → g. It is well defined. Then we have a commutative diagram

H3(g, n, V )

∂

��

∼= // crmod(g, n, V )

D

��
H3(g, V )

∼= // crmod(g, V )

Remark 0.5. In fact, Theorem 0.3 even implies Gerstenhaber’s Theorem.
Indeed, given an epimorphism π : n → g and a g-module V , consider the long

exact sequence in cohomology induced by the short exact sequence of complexes

0 → C∗(g, V ) → C∗(n, V ) → C∗(g, n, V ) → 0.

There is furthermore an exact sequence

Ext (n, V ) → crmod(g, n, V ) → crmod(g, V ) → crmod(n, V ),

where V is viewed as an n-module via π : n → g. Together, we have an exact
ladder

. . . // H2(n, V ) // H3(g, n, V ) // H3(g, V ) // . . .

. . . // Ext (n, V ) //

OO

crmod(g, n, V ) //

OO

crmod(g, V ) //

OO

. . .
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Such an exact ladder exists for each choice of V and π : n → g. Now suppose
that V is an injective g-module. ThenH3(g, V ) = 0. Show that the isomorphism
between relative crossed modules and relative 3-cohomology implies that in this
case crmod(g, V ) = 0.

For the general case, embed V into an injective g-module I with quotient Q:

0 → V → I → Q → 0.

This short exact sequence of coefficients induces long exact sequences both in
cohomology and gives an exact ladder

. . . // H2(g, Q) // H3(g, V ) // H3(g, I) // . . .

. . . // Ext (g, Q) //

OO

crmod(g, V ) //

OO

crmod(g, I) //

OO

. . .

Here we have H3(g, I) = 0 and crmod(g, I) = 0 by the preceding, and the
map Ext (g, Q) → H2(g, Q) is an isomorphism. Conclude.
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