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We consider the Godbillon-Vey cocycle θ whose class [θ] ∈ H3(Vect (S1),C)
generates the third (complex valued) cohomology of the Lie algebra of vector
fields on the line W1.

The Lie algebra W1 of (complex valued) polynomial vector fields on the line,
in one formal variable z. As a complex vector space,

W1 =
⊕

n≥−1

Czn+1 d

dz
,

and the bracket is given by
[
zm+1 d

dz
, zn+1 d

dz

]
= (n−m)zn+m+1 d

dz
.

Sometimes, one writes these generators as en := zn+1 d
dz

and then the bracket
takes the form [em, en] = (n−m)en+m. Usually, when one speaks about formal
vector fields, the coefficient functions are supposed to be formal series and not
polynomials, so this corresponds then to Ŵ1 = Πn≥−1Cz

n+1 d
dz

and the bracket
is also written formally as

[
f(z)

d

dz
, g(z)

d

dz

]
= (fg′ − gf ′)(z)

d

dz
,

for formal series f, g ∈ C[[z]]. Usually, one identifies a vector field (polynomial
or formal) with its coefficient function and writes simply f for f d

dz
.

The following defines a one parameter family of 3-cocycles on W1 (and Ŵ1):

θz(f, g, h) :=

∣∣∣∣∣∣

f g h

f ′ g′ h′

f ′′ g′′ h′′

∣∣∣∣∣∣
(z).

Usually one takes as Godbillon-Vey cocycle the evaluation in 0, i.e. θ := θ0, but
actually all θz are cohomologuous.

In the same way as Ŵ1 represents formal vector fields, there are formal func-
tions and formal differential forms. More generally, let Fλ be the space of (poly-
nomial) λ-densities, i.e. as a complex vector space Fλ =

⊕
n≥−1

Czn+1(dz)λ

and Fλ becomes a W1-module by setting

f(z)
d

dz
· g(z)(dz)λ = (fg′ + λgf ′)(z)(dz)λ.
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In the same way, the space of formal λ-densities is denoted by F̂λ. Observe
that F̂0 are formal functions on the complex line C, F̂1 are formal 1-forms, and
F̂−1 = Ŵ1 as a Ŵ1-module (where Ŵ1 is regarded as a Ŵ1-module using the
adjoint action).

It is easy to verify that the formal de Rham sequence

0 → C → F̂0

ddR→ F̂1 → 0 (1)

is a short exact sequence of Ŵ1-modules.
There is another cocycle which plays a role in the construction. Namely, let

α ∈ Z2(Ŵ1, F̂1) be defined by

α(f, g) :=

∣∣∣∣
f ′ g′

f ′′ g′′

∣∣∣∣ (z)(dz)1.

Remark 0.1. This cocycle is the integrand of the Gelfand-Fuchs cocycle

ω(f, g) :=

∫

S1

∣∣∣∣
f ′ g′

f ′′ g′′

∣∣∣∣ (t)dt

whose class [ω] generates H2(Vect (S1),C). The Gelfand-Fuks cocycle also de-
fines a central extension of Vect (S1) which gives again (up to a factor) the
Virasoro algebra.

The key relation between the two cocycles θz and α is described in the
following lemma. In its statement, θz is viewed as a function in z to which one
applies the de Rham differential and obtains a 1-form. On the other hand, to
the cocycle α ∈ Z2(Ŵ1, F̂1), one may apply the Chevalley-Eilenberg differential

d (corresponding to coefficients in the trivial Ŵ1-module C), and the result is
non trivial.

Lemma 0.2. ddRθz = dα.

Proof. Exercise.

Corollary 0.3. The connecting homomorphism induced by the short exact se-
quence (1) sends α to (the negative of) θ0, i.e.

∂α = −θ0.

Proof. Exercise.

Corollary 0.4. The de Rham sequence (1) and the abelian extension of Ŵ1 by

F̂1 using the 2-cocycle α fit together to give a crossed module of Lie algebras

0 → C → F̂0 → F̂1 ×α Ŵ1 → Ŵ1 → 0.

This crossed module represents the Godbillon-Vey class in H3(Ŵ1,C).
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Proof. The statement follows immediately from the construction theorem in the
lectures and the above Corollary.

Remark 0.5. It is possible to construct similar crossed modules for the cor-
responding Godbillon-Vey classes in related Lie algebras like W1, Vect (S

1) or
even Hol(Σk), the Lie algebra of holomorphic vector fields on the open Riemann
surface Σk := Σ\{p1, . . . , pk} where Σ is a compact connected Riemann surface,
p1, . . . , pk are pairwise distinct points of Σ and k ≥ 1, and also Vect 1,0(Σ) or
Vect 0,1(Σ), the Lie algebras of smooth vector fields of type (1, 0) (resp. of type
(0, 1)) on the compact connected Riemann surface Σ.

Let us here only comment on Vect (S1). Indeed, the de Rham sequence for
S1 instead of the line is not suitable for the construction, as it reads

0 → R → C∞(S1) → Ω1(S1) → H1(S1,R) → 0,

and thus has four terms instead of three. The way out is to lift vector fields on
the circle to its universal covering which is the real line, and to make them in
this way act on the de Rham sequence on the line. This idea leads to the suitable
crossed module representing the Godbillon-Vey cocycle for Vect (S1), and the
same idea also let to the crossed module for the group of diffeomorphisms on
the circle.

Remark 0.6. Let us comment on the construction of the Gelfand-Fuchs cocycle

ω(f, g) =

∫

S1

∣∣∣∣
f ′ g′

f ′′ g′′

∣∣∣∣ (t)dt

as a fiber integral of the Godbillon-Vey cocycle θz . The Godbillon-Vey cocycle
θz is here seen as a formal function on the line with values in Lie algebra 1-
cocycles of Ŵ1. As such we may apply the de Rham differential to θz , and the
above lemma shows that ddRθz = dα.

In order to define now the fiber integral
∫
S1 α(t)dt, observe that vector fields

on the circle may be Taylor expanded in some point t ∈ S1 in order to give formal
vector fields. As the circle S1 has a trivial tangent bundle, the expansions in the
different points t ∈ S1 form a smooth function in t ∈ S1 with values in formal
vector fields. The expression

∫
S1 α(t)dt takes these expansions at t, inserts them

into α and integrates the obtained function over S1. One sees that this fiber
integral gives here the Gelfand-Fuchs cocycle.

The cocycle identity for the fiber integral follows directly from the formula
ddRθz = dα. Indeed,

d

∫

S1

α(t)dt =

∫

S1

dα(t)dt =

∫

S1

ddRθz = 0

by Stokes’ Theorem.
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