## Elementary Algebraic Geometry Mini-Project

In all questions, the field $k$ is algebraically closed.

1. Let $k$ be a field and $n$ a positive integer. Determine whether the set

$$
\mathbf{G L}(n, k):=\{A \in \operatorname{Mat}(n \times n, k): \operatorname{det}(A) \neq 0\}
$$

is an affine algebraic set.
2. Show that
(a) the radical ideal $\sqrt{I}$ of a commutative ring $R$ coincides with the intersection of all prime ideals of $R$ containing $I$.
(b) Use the ring $\mathbb{Z}$ to illustrate the equality in 2(a) above.
3. Let $A:=k[x, y, z]$ be a polynomial ring over a field $k$ and $J$ an ideal of $A$ such that

$$
J:=\left(x^{2}+y^{2}+z^{2}, x y+x z+y z\right) .
$$

Identify $V(J)$ and $I(V(J))$.
4. Show that the variety $V\left(x y+z, x^{2}-x+y^{2}+y z\right) \subset k^{3}$ is reducible.
5. Determine the coordinate ring of the closed subvariety $\mathbf{S L}(2, k)$ of the set Mat $(2 \times 2, k)$ of $2 \times 2$ matrices defined over a field $k$; i.e.,

$$
\mathbf{S L}(n, k):=\{A \in \operatorname{Mat}(n \times n, k): \operatorname{det}(A)=1\}
$$

6. Write the ideal $\left(x^{3}-x, x^{2}-y\right) \subset k[x, y]$ as the intersection of three prime ideals. Describe the corresponding geometry.
