EAUMP-ICTP SCHOOL 2018: ADVANCED LINEAR ALGEBRA

The base field throughout is \mathbb{C}.

Project 1

Here V is an n-dimensional vector space, $A \in \operatorname{End}(V)$ and $M=\left(m_{i j}\right)_{i, j=1}^{n}$ is the corresponding matrix with respect to some choice of basis. Furthermore, we take $p_{A}(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}$ to be the characteristic polynomial of A.
(1) The trace of M is the sum of its diagonal entries denoted $\operatorname{Tr}(M)$ and defined by $\operatorname{Tr}(M)=\sum_{i=1}^{n} m_{i i}$. Show that the trace of M is invariant under conjugation by invertible matrices, i.e.

$$
\operatorname{Tr}(M)=\operatorname{Tr}\left(P^{-1} M P\right)
$$

Deduce that trace of A is well-defined.
(2) Show that the trace of A is given by $\operatorname{Tr}(A)=-a_{n-1}$ where a_{n-1} is the coefficient of x^{n-1} in the characteristic polynomial.
(3) Show that the determinant of A is given by $\operatorname{det}(A)=(-1)^{n} a_{0}$.
(4) (Reality check) Confirm that all the coefficients of the characteristic polynomial are invariant under conjugation and so well defined.
(5) Study the linear map

$$
\bigwedge^{n} A: \bigwedge^{n} V \longrightarrow \bigwedge^{n} V
$$

Show that it coincides with multiplication by the determinant.
(6) So a_{0} and a_{n-1} have some cool interpretation, it turns out that all the coefficients of the characteristic polynomial have cool interpretations

$$
a_{n-i}=(-1)^{i} \operatorname{Tr}\left(\bigwedge^{i} A\right)
$$

Is this relatively easy when A is diagonalisable? If so, can one try to lift the proof to all matrices?
(7) Now fix $n=3$. Assuming the results above or otherwise, express $\operatorname{Tr}\left(A^{4}\right)$ in terms of the coefficients a_{2}, a_{1}, a_{0} of the characteristic polynomial. Is it possible to do the same for $\operatorname{Tr}\left(A^{5}\right)$? Can this be generalised, i.e. for general n, can one express $\operatorname{Tr}\left(A^{k}\right)$ in terms of the coefficients a_{n-1}, \ldots, a_{0} ?

Project 2

(1) Let $J_{y, n} \in \operatorname{Mat}(n, \mathbb{C})$ be the matrix with one eigenvalue y and a one Jordan block of size n, i.e. $J_{y, n}=\left(j_{i k}\right)_{i, k=1}^{n}$ with $j_{i i}=y, j_{i(i+1)}=1$ and all other entries 0 . Prove that there are diagonal matrices arbitrarily close to $J_{y, n}$, i.e. for all $\epsilon>0$ there is a diagonalisable matrix D such that $\left\|J_{y, n}-M\right\|<\epsilon$.

Alternatively, you may want to do this in algebro-geometric terms, i.e. show that the subset of diagonalisable matrices is open in the affine variety of $n \times n$ matrices.
(2) Take a permutation $\sigma \in S_{n}$ and let P_{σ} be the $n \times n$-matrix given by permuting the columns of the identity matrix with σ, that is, if $P=\left(p_{i j}\right)_{i, j=1}^{n}$ then $p_{i j}=1$ if $j=\sigma(i)$ and 0 otherwise. Let D be a diagonal $n \times n$-matrix with diagonal entries d_{1}, \ldots, d_{n}, show that conjugation by P_{σ} gives a diagonal matrix $d_{\sigma(1)}, \ldots, d_{\sigma(n)}$.
(3) A partition of an integer n is a way of writing n as a sum of positive integers. For example, 4 has 5 partitions: (4); $(3+1) ;(2+2) ;(2+1+1)$ and $/(1+1+1+1)$. More formally we will define a partition to be a finite sequence of non-negative integers $\left(\lambda_{i}\right)$ that is weakly decreasing

$$
\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{k}
$$

The size of a partition is the sum of its entries and is denoted $|\lambda|$.
The set of partitions of a fixed size n can be given a partial ordering as follows: for two partitions λ and μ of size n we say $\lambda \geq \mu$ if for all k

$$
\lambda_{1}+\cdots+\lambda_{k} \geq \mu_{1}+\cdots+\mu_{k}
$$

Write down all the partitions of size 6 and the corresponding Hasse diagram (check Wikipedia for definition of Hasse diagram).
(4) Show that a matrix is nilpotent if and only if all its eigenvalues are 0.
(5) The group of invertible $n \times n$-matrices GL (n) acts on the set of nilpotent matrices by conjugation. Show that there is a natural bijection between the orbits of this action and partitions of size n. Given a partition λ we will use \mathfrak{N}_{λ} to denoted the corresponding orbit.
(6) For a partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{d}\right)$ of n, let $N \in \mathfrak{N}_{\lambda}$. Show that

$$
\operatorname{rank}\left(N^{k}\right)=\sum_{\lambda_{i} \geq k}\left(\lambda_{i}-k\right) .
$$

(7) (Needs basic algebraic geometry from early next week) Show that the set of matrices M with $\operatorname{rank}(M) \geq k$ forms a closed subvariety of the affine variety of $n \times n$-matrices. Also show that set of nilpotent matrices is a closed subvartiety of the affine variety of $n \times n$-matrices.
(8) The set of orbits of nilpotent matrices under conjugation is also a partially ordered set: given two orbits \mathfrak{N} and \mathfrak{M}, we say $\mathfrak{N} \geq \mathfrak{M}$ if \mathfrak{M} is contained in the closure of \mathfrak{N}. Use the above results to show that

$$
\mathfrak{N}_{\lambda} \geq \mathfrak{N}_{\mu} \Longrightarrow \lambda \geq \mu
$$

(9) The other direction

$$
\mathfrak{N}_{\lambda} \geq \mathfrak{N}_{\mu} \Longleftarrow \lambda \geq \mu
$$

is true but a little harder to prove for me. Give it a good go! Come ask us if you need any hints.

